BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hamm B, Staks T, Taupitz M, Maibauer R, Speidel A, Huppertz A, Frenzel T, Lawaczeck R, Wolf KJ, Lange L. Contrast-enhanced MR imaging of liver and spleen: first experience in humans with a new superparamagnetic iron oxide. J Magn Reson Imaging. 1994;4:659-668. [PMID: 7981510 DOI: 10.1002/jmri.1880040508] [Cited by in Crossref: 126] [Cited by in F6Publishing: 130] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Hsiao YP, Huang CH, Lin YC, Jan TR. Systemic exposure to a single dose of ferucarbotran aggravates neuroinflammation in a murine model of experimental autoimmune encephalomyelitis. Int J Nanomedicine 2019;14:1229-40. [PMID: 30863056 DOI: 10.2147/IJN.S189327] [Reference Citation Analysis]
2 Alger JR, Harreld JH, Chen S, Mintorovitch J, Lu DS. Time-to-echo optimization for spin echo magnetic resonance imaging of liver metastasis using superparamagnetic iron oxide particles. J Magn Reson Imaging 2001;14:586-94. [DOI: 10.1002/jmri.1223] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 0.5] [Reference Citation Analysis]
3 Jun Y, Jang J, Cheon J. Magnetic Nanoparticle Assisted Molecular MR Imaging. In: Chan WCW, editor. Bio-Applications of Nanoparticles. New York: Springer; 2007. pp. 85-106. [DOI: 10.1007/978-0-387-76713-0_7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
4 Ito A, Kuga Y, Honda H, Kikkawa H, Horiuchi A, Watanabe Y, Kobayashi T. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett 2004;212:167-75. [PMID: 15279897 DOI: 10.1016/j.canlet.2004.03.038] [Cited by in Crossref: 215] [Cited by in F6Publishing: 172] [Article Influence: 11.9] [Reference Citation Analysis]
5 Chou CT, Chen RC, Chen WT, Lii JM. Detection of hepatocellular carcinoma by ferucarbotran-enhanced magnetic resonance imaging: the efficacy of accumulation phase fat-suppressed T1-weighted imaging. Clin Radiol 2009;64:22-9. [PMID: 19070694 DOI: 10.1016/j.crad.2008.07.010] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
6 Okuhata Y. Delivery of diagnostic agents for magnetic resonance imaging. Advanced Drug Delivery Reviews 1999;37:121-37. [DOI: 10.1016/s0169-409x(98)00103-3] [Cited by in Crossref: 108] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
7 Reimer P, Marx C, Rummeny EJ, Müller M, Lentschig M, Balzer T, Dietl K, Sulkowski U, Berns T, Shamsi K, Peters PE. SPIO-enhanced 2D-TOF MR angiography of the portal venous system: Results of an intraindividual comparison. J Magn Reson Imaging 1997;7:945-9. [DOI: 10.1002/jmri.1880070602] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 1.2] [Reference Citation Analysis]
8 Shen Y, Huang Z, Liu X, Qian J, Xu J, Yang X, Sun A, Ge J. Iron-induced myocardial injury: an alarming side effect of superparamagnetic iron oxide nanoparticles. J Cell Mol Med 2015;19:2032-5. [PMID: 26041641 DOI: 10.1111/jcmm.12582] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
9 Halig LV, Wang D, Wang AY, Chen ZG, Fei B. Biodistribution Study of Nanoparticle Encapsulated Photodynamic Therapy Drugs Using Multispectral Imaging. Proc SPIE Int Soc Opt Eng 2013;8672. [PMID: 24236230 DOI: 10.1117/12.2006492] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
10 Doerfler A, Engelhorn T, Heiland S, Knauth M, Wanke I, Forsting M. MR contrast agents in acute experimental cerebral ischemia: potential adverse impacts on neurologic outcome and infarction size. J Magn Reson Imaging 2000;11:418-24. [PMID: 10767071 DOI: 10.1002/(sici)1522-2586(200004)11:4<418::aid-jmri10>3.0.co;2-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Bao Y, Wen T, Samia AC, Khandhar A, Krishnan KM. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine. J Mater Sci 2016;51:513-53. [PMID: 26586919 DOI: 10.1007/s10853-015-9324-2] [Cited by in Crossref: 91] [Cited by in F6Publishing: 53] [Article Influence: 13.0] [Reference Citation Analysis]
12 Völk M, Strotzer M. [Diagnostic imaging of splenic disease]. Radiologe 2006;46:229-43; quiz 244. [PMID: 16435091 DOI: 10.1007/s00117-005-1333-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
13 Lunov O, Uzhytchak M, Smolková B, Lunova M, Jirsa M, Dempsey NM, Dias AL, Bonfim M, Hof M, Jurkiewicz P, Petrenko Y, Kubinová Š, Dejneka A. Remote Actuation of Apoptosis in Liver Cancer Cells via Magneto-Mechanical Modulation of Iron Oxide Nanoparticles. Cancers (Basel) 2019;11:E1873. [PMID: 31779223 DOI: 10.3390/cancers11121873] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
14 Parsa H, Shamsasenjan K, Movassaghpour A, Akbarzadeh P, Amoghli Tabrizi B, Dehdilani N, Lotfinegad P, Soleimanloo F. Effect of Superparamagnetic Iron Oxide Nanoparticles-Labeling on Mouse Embryonic Stem Cells. Cell J 2015;17:221-30. [PMID: 26199901 DOI: 10.22074/cellj.2016.3719] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
15 Nazli C, Demirer GS, Yar Y, Acar HY, Kizilel S. Targeted delivery of doxorubicin into tumor cells via MMP-sensitive PEG hydrogel-coated magnetic iron oxide nanoparticles (MIONPs). Colloids Surf B Biointerfaces 2014;122:674-83. [PMID: 25183059 DOI: 10.1016/j.colsurfb.2014.07.049] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 7.3] [Reference Citation Analysis]
16 Lassenberger A, Scheberl A, Stadlbauer A, Stiglbauer A, Helbich T, Reimhult E. Individually Stabilized, Superparamagnetic Nanoparticles with Controlled Shell and Size Leading to Exceptional Stealth Properties and High Relaxivities. ACS Appl Mater Interfaces 2017;9:3343-53. [PMID: 28071883 DOI: 10.1021/acsami.6b12932] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 6.6] [Reference Citation Analysis]
17 Hsiao YP, Shen CC, Huang CH, Lin YC, Jan TR. Iron oxide nanoparticles attenuate T helper 17 cell responses in vitro and in vivo. Int Immunopharmacol 2018;58:32-9. [PMID: 29549717 DOI: 10.1016/j.intimp.2018.03.007] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
18 Reimer P, Allkemper T, Bremer C, Rummeny EJ, Spiegel HU, Balzer T, Peters PE. Assessment of reperfusion injury by means of MR contrast agents in rat liver. J Magn Reson Imaging 1997;7:490-4. [DOI: 10.1002/jmri.1880070307] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.2] [Reference Citation Analysis]
19 Fukuda K, Mori K, Hasegawa N, Nasu K, Ishige K, Okamoto Y, Shiigai M, Abei M, Minami M, Hyodo I. Safety margin of radiofrequency ablation for hepatocellular carcinoma: a prospective study using magnetic resonance imaging with superparamagnetic iron oxide. Jpn J Radiol 2019;37:555-63. [DOI: 10.1007/s11604-019-00843-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
20 Higashihara H, Murakami T, Kim T, Hori M, Onishi H, Nakata S, Osuga K, Tomoda K, Nakamura H. Differential diagnosis between metastatic tumors and nonsolid benign lesions of the liver using ferucarbotran-enhanced MR imaging. European Journal of Radiology 2010;73:125-30. [DOI: 10.1016/j.ejrad.2008.09.028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
21 Sato I, Umemura M, Mitsudo K, Kioi M, Nakashima H, Iwai T, Feng X, Oda K, Miyajima A, Makino A, Iwai M, Fujita T, Yokoyama U, Okumura S, Sato M, Eguchi H, Tohnai I, Ishikawa Y. Hyperthermia generated with ferucarbotran (Resovist®) in an alternating magnetic field enhances cisplatin-induced apoptosis of cultured human oral cancer cells. J Physiol Sci 2014;64:177-83. [PMID: 24619404 DOI: 10.1007/s12576-014-0309-8] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
22 Yang HW, Lu YJ, Lin KJ, Hsu SC, Huang CY, She SH, Liu HL, Lin CW, Xiao MC, Wey SP, Chen PY, Yen TC, Wei KC, Ma CC. EGRF conjugated PEGylated nanographene oxide for targeted chemotherapy and photothermal therapy. Biomaterials 2013;34:7204-14. [PMID: 23800742 DOI: 10.1016/j.biomaterials.2013.06.007] [Cited by in Crossref: 91] [Cited by in F6Publishing: 84] [Article Influence: 10.1] [Reference Citation Analysis]
23 Sherwood J, Lovas K, Rich M, Yin Q, Lackey K, Bolding MS, Bao Y. Shape-dependent cellular behaviors and relaxivity of iron oxide-based T 1 MRI contrast agents. Nanoscale 2016;8:17506-15. [DOI: 10.1039/c6nr06158c] [Cited by in Crossref: 31] [Cited by in F6Publishing: 6] [Article Influence: 5.2] [Reference Citation Analysis]
24 Hauger O, Delalande C, Deminière C, Fouqueray B, Ohayon C, Garcia S, Trillaud H, Combe C, Grenier N. Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 2000;217:819-26. [PMID: 11110949 DOI: 10.1148/radiology.217.3.r00dc04819] [Cited by in Crossref: 54] [Cited by in F6Publishing: 52] [Article Influence: 2.6] [Reference Citation Analysis]
25 Gerwing M, Krähling T, Schliemann C, Harrach S, Schwöppe C, Berdel AF, Klein S, Hartmann W, Wardelmann E, Heindel WL, Lenz G, Berdel WE, Wildgruber M. Multiparametric Magnetic Resonance Imaging for Immediate Target Hit Assessment of CD13-Targeted Tissue Factor tTF-NGR in Advanced Malignant Disease. Cancers (Basel) 2021;13:5880. [PMID: 34884988 DOI: 10.3390/cancers13235880] [Reference Citation Analysis]
26 Bendszus M, Stoll G. Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging. J Neurosci 2003;23:10892-6. [PMID: 14645484 [PMID: 14645484 DOI: 10.1523/jneurosci.23-34-10892.2003] [Cited by in Crossref: 115] [Article Influence: 6.1] [Reference Citation Analysis]
27 Fukukura Y, Kamiyama T, Takumi K, Shindo T, Higashi R, Nakajo M. Comparison of ferucarbotran-enhanced fluid-attenuated inversion-recovery echo-planar, T2-weighted turbo spin-echo, T2*-weighted gradient-echo, and diffusion-weighted echo-planar imaging for detection of malignant liver lesions. J Magn Reson Imaging 2010;31:607-16. [PMID: 20187203 DOI: 10.1002/jmri.22098] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
28 Loos C, Syrovets T, Musyanovych A, Mailänder V, Landfester K, Nienhaus GU, Simmet T. Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions. Beilstein J Nanotechnol 2014;5:2403-12. [PMID: 25671136 DOI: 10.3762/bjnano.5.250] [Cited by in Crossref: 102] [Cited by in F6Publishing: 83] [Article Influence: 12.8] [Reference Citation Analysis]
29 Vogl TJ, Hammerstingl R, Schwarz W, Kümmel S, Müller PK, Balzer T, Lauten MJ, Balzer JO, Mack MG, Schimpfky C, Schrem H, Bechstein WO, Neuhaus P, Felix R. Magnetic resonance imaging of focal liver lesions. Comparison of the superparamagnetic iron oxide resovist versus gadolinium-DTPA in the same patient. Invest Radiol 1996;31:696-708. [PMID: 8915751 DOI: 10.1097/00004424-199611000-00004] [Cited by in Crossref: 74] [Cited by in F6Publishing: 62] [Article Influence: 3.0] [Reference Citation Analysis]
30 Caramella D, Jin X, Mascalchi M, Agen C, Petruzzi P, Kresse M, Bianucci D, Ceretti E, Semmler W, Bartolozzi C. Liver and spleen enhancement after intravenous injection of carboxydextran magnetite: effect of dose, delay of imaging, and field strength in anex vivo model. MAGMA 1996;4:225-30. [DOI: 10.1007/bf01772010] [Cited by in Crossref: 5] [Article Influence: 0.2] [Reference Citation Analysis]
31 Lee P, Hsu S, Wang J, Tsai J, Lin K, Wey S, Chen F, Lai C, Yen T, Sung H. The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core–shell nanoparticles. Biomaterials 2010;31:1316-24. [DOI: 10.1016/j.biomaterials.2009.11.010] [Cited by in Crossref: 68] [Cited by in F6Publishing: 66] [Article Influence: 5.7] [Reference Citation Analysis]
32 Etemadi H, Buchanan JK, Kandile NG, Plieger PG. Iron Oxide Nanoparticles: Physicochemical Characteristics and Historical Developments to Commercialization for Potential Technological Applications. ACS Biomater Sci Eng 2021. [PMID: 34786932 DOI: 10.1021/acsbiomaterials.1c00938] [Reference Citation Analysis]
33 Huang Z, Li C, Yang S, Xu J, Shen Y, Xie X, Dai Y, Lu H, Gong H, Sun A, Qian J, Ge J. Magnetic resonance hypointensive signal primarily originates from extracellular iron particles in the long-term tracking of mesenchymal stem cells transplanted in the infarcted myocardium. Int J Nanomedicine 2015;10:1679-90. [PMID: 25767388 DOI: 10.2147/IJN.S77858] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 0.7] [Reference Citation Analysis]
34 Melancon MP, Lu W, Li C. Gold-Based Magneto/Optical Nanostructures: Challenges for In Vivo Applications in Cancer Diagnostics and Therapy. MRS Bull 2009;34:415-21. [DOI: 10.1557/mrs2009.117] [Cited by in Crossref: 72] [Cited by in F6Publishing: 61] [Article Influence: 6.5] [Reference Citation Analysis]
35 Gitsioudis G, Stuber M, Arend I, Thomas M, Yu J, Hilbel T, Giannitsis E, Katus HA, Korosoglou G. Steady-state equilibrium phase inversion recovery ON-resonant water suppression (IRON) MR angiography in conjunction with superparamagnetic nanoparticles. A robust technique for imaging within a wide range of contrast agent dosages. J Magn Reson Imaging 2013;38:836-44. [PMID: 23418107 DOI: 10.1002/jmri.24043] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
36 Ward J, Naik KS, Guthrie JA, Wilson D, Robinson PJ. Hepatic lesion detection: comparison of MR imaging after the administration of superparamagnetic iron oxide with dual-phase CT by using alternative-free response receiver operating characteristic analysis. Radiology 1999;210:459-66. [PMID: 10207430 DOI: 10.1148/radiology.210.2.r99fe05459] [Cited by in Crossref: 187] [Cited by in F6Publishing: 158] [Article Influence: 8.1] [Reference Citation Analysis]
37 Chung YE, Park MS, Kim MS, Kim E, Park J, Song HT, Choi JY, Kim MJ, Kim KW. Quantification of superparamagnetic iron oxide-mediated signal intensity change in patients with liver cirrhosis using T2 and T2* mapping: a preliminary report. J Magn Reson Imaging 2010;31:1379-86. [PMID: 20512890 DOI: 10.1002/jmri.22184] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
38 Krishnan KM. Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Trans Magn 2010;46:2523-58. [PMID: 20930943 DOI: 10.1109/TMAG.2010.2046907] [Cited by in Crossref: 542] [Cited by in F6Publishing: 125] [Article Influence: 45.2] [Reference Citation Analysis]
39 Fujita M, Yamamoto R, Fritz-zieroth B, Yamanaka T, Takahashi M, Miyazawa T, Tatsuta M, Terada N, Hosomi N, Inoue E, Kuroda C. Contrast enhancement with GD-EOB-DTPA in MR imaging of hepatocellular carcinoma in mice: A comparison with superparamagnetic iron oxide. J Magn Reson Imaging 1996;6:472-7. [DOI: 10.1002/jmri.1880060310] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 1.2] [Reference Citation Analysis]
40 Bell G, Balasundaram G, Attia ABE, Mandino F, Olivo M, Parkin IP. Functionalised iron oxide nanoparticles for multimodal optoacoustic and magnetic resonance imaging. J Mater Chem B 2019;7:2212-9. [DOI: 10.1039/c8tb02299b] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
41 Low RN. Contrast agents for MR imaging of the liver. J Magn Reson Imaging 1997;7:56-67. [DOI: 10.1002/jmri.1880070109] [Cited by in Crossref: 34] [Cited by in F6Publishing: 25] [Article Influence: 1.4] [Reference Citation Analysis]
42 Harisinghani MG, Saini S, Weissleder R, Rubin D, deLange E, Harms S, Weinreb J, Small W, Sukerkar A, Brown JJ, Zelch J, Lucas M, Morris M, Hahn PF. Splenic Imaging with Ultrasmall Superparamagnetic Iron Oxide Ferumoxtran-10 (AMI-7227): Preliminary Observations: . Journal of Computer Assisted Tomography 2001;25:770-6. [DOI: 10.1097/00004728-200109000-00017] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
43 Abdollah MR, Kalber T, Tolner B, Southern P, Bear JC, Robson M, Pedley RB, Parkin IP, Pankhurst QA, Mulholland P, Chester K. Prolonging the circulatory retention of SPIONs using dextran sulfate: in vivo tracking achieved by functionalisation with near-infrared dyes. Faraday Discuss 2014;175:41-58. [PMID: 25298115 DOI: 10.1039/c4fd00114a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 1.6] [Reference Citation Analysis]
44 Runge VM. Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging 2000;12:205-13. [DOI: 10.1002/1522-2586(200008)12:2<205::aid-jmri1>3.0.co;2-p] [Cited by in Crossref: 167] [Cited by in F6Publishing: 23] [Article Influence: 7.6] [Reference Citation Analysis]
45 Mohtashamdolatshahi A, Kratz H, Kosch O, Hauptmann R, Stolzenburg N, Wiekhorst F, Sack I, Hamm B, Taupitz M, Schnorr J. In vivo magnetic particle imaging: angiography of inferior vena cava and aorta in rats using newly developed multicore particles. Sci Rep 2020;10:17247. [PMID: 33057029 DOI: 10.1038/s41598-020-74151-4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
46 Kehagias DT, Gouliamos AD, Smyrniotis V, Vlahos LJ. Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A). J Magn Reson Imaging 2001;14:595-601. [DOI: 10.1002/jmri.1224] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 2.0] [Reference Citation Analysis]
47 Wersebe A, Wiskirchen J, Decker U, Schick F, Dietz K, M??ller-schimpfle M, Claussen CD, Pereira PL. Comparison of Gadolinium-BOPTA and Ferucarbotran-Enhanced Three-Dimensional T1-Weighted Dynamic Liver Magnetic Resonance Imaging in the Same Patient: . Investigative Radiology 2006;41:264-71. [DOI: 10.1097/01.rli.0000188359.72928.0f] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.1] [Reference Citation Analysis]
48 Matsuo M, Kanematsu M, Itoh K, Ito K, Maetani Y, Kondo H, Kako N, Matsunaga N, Hoshi H, Shiraishi J. Detection of malignant hepatic tumors: comparison of gadolinium-and ferumoxide-enhanced MR imaging. AJR Am J Roentgenol. 2001;177:637-643. [PMID: 11517061 DOI: 10.2214/ajr.177.3.1770637] [Cited by in Crossref: 56] [Cited by in F6Publishing: 45] [Article Influence: 2.7] [Reference Citation Analysis]
49 Earls JP, Bluemke DA. NEW MR IMAGING CONTRAST AGENTS. Magnetic Resonance Imaging Clinics of North America 1999;7:255-73. [DOI: 10.1016/s1064-9689(21)00021-0] [Cited by in Crossref: 20] [Article Influence: 0.9] [Reference Citation Analysis]
50 Asbach P, Klessen C, Koch M, Hamm B, Taupitz M. Magnetic resonance imaging findings of atypical focal nodular hyperplasia of the liver. Clin Imaging 2007;31:244-52. [PMID: 17599618 DOI: 10.1016/j.clinimag.2007.03.003] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
51 Allkemper T, Bremer C, Matuszewski L, Ebert W, Reimer P. Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology 2002;223:432-8. [PMID: 11997549 DOI: 10.1148/radiol.2232010241] [Cited by in Crossref: 98] [Cited by in F6Publishing: 94] [Article Influence: 4.9] [Reference Citation Analysis]
52 Mahmoudi M, Simchi A, Milani AS, Stroeve P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci 2009;336:510-8. [PMID: 19476952 DOI: 10.1016/j.jcis.2009.04.046] [Cited by in Crossref: 239] [Cited by in F6Publishing: 216] [Article Influence: 18.4] [Reference Citation Analysis]
53 Shen CC, Wang CC, Liao MH, Jan TR. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomedicine 2011;6:1229-35. [PMID: 21753874 DOI: 10.2147/IJN.S21019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 23] [Article Influence: 0.8] [Reference Citation Analysis]
54 Ludewig P, Graeser M, Forkert ND, Thieben F, Rández-Garbayo J, Rieckhoff J, Lessmann K, Förger F, Szwargulski P, Magnus T, Knopp T. Magnetic particle imaging for assessment of cerebral perfusion and ischemia. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1757. [PMID: 34617413 DOI: 10.1002/wnan.1757] [Reference Citation Analysis]
55 Murakami T, Kim T, Takamura M, Shimizu J, Hori M, Dono K, Takachi K, Kato N, Miyazawa T, Sakon M, Monden M, Nakamura H. Evaluation of regional liver damage by magnetic resonance imaging with superparamagnetic iron oxide in rat liver. Dig Dis Sci 2001;46:148-55. [PMID: 11270779 DOI: 10.1023/a:1005585101620] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
56 Mitchell DG. MR imaging contrast agents — what's in a name? J Magn Reson Imaging 1997;7:1-4. [DOI: 10.1002/jmri.1880070102] [Cited by in Crossref: 97] [Cited by in F6Publishing: 72] [Article Influence: 3.9] [Reference Citation Analysis]
57 Ward J, Chen F, Guthrie JA, Wilson D, Lodge JP, Wyatt JI, Robinson PJ. Hepatic lesion detection after superparamagnetic iron oxide enhancement: comparison of five T2-weighted sequences at 1.0 T by using alternative-free response receiver operating characteristic analysis. Radiology. 2000;214:159-166. [PMID: 10644117 DOI: 10.1148/radiology.214.1.r00ja21159] [Cited by in Crossref: 58] [Cited by in F6Publishing: 53] [Article Influence: 2.6] [Reference Citation Analysis]
58 Gallo J, Long NJ, Aboagye EO. Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev 2013;42:7816. [DOI: 10.1039/c3cs60149h] [Cited by in Crossref: 152] [Cited by in F6Publishing: 134] [Article Influence: 16.9] [Reference Citation Analysis]
59 Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR. A role of cellular glutathione in the differential effects of iron oxide nanoparticles on antigen-specific T cell cytokine expression. Int J Nanomedicine 2011;6:2791-8. [PMID: 22114506 DOI: 10.2147/IJN.S25588] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 0.3] [Reference Citation Analysis]
60 Reimer P, Müller M, Marx C, Balzer T. Evaluation of the Time Window for Resovist-Enhanced T2-Weighted MRI of the Liver. Academic Radiology 2002;9:S336-8. [DOI: 10.1016/s1076-6332(03)80222-2] [Cited by in Crossref: 7] [Article Influence: 0.4] [Reference Citation Analysis]
61 Gao S, George SJ, Zhou Z. Interaction of Gd-DTPA with phosphate and phosphite: toward the reaction intermediate in nephrogenic systemic fibrosis. Dalton Trans 2016;45:5388-94. [DOI: 10.1039/c5dt04172d] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
62 Reimer P, Allkemper T, Matuszewski L, Balzer T. Contrast-enhanced 3D-MRA of the upper abdomen with a bolus-injectable SPIO (SH U 555 A). J Magn Reson Imaging 1999;10:65-71. [DOI: 10.1002/(sici)1522-2586(199907)10:1<65::aid-jmri9>3.0.co;2-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
63 Hifumi H, Yamaoka S, Tanimoto A, Citterio D, Suzuki K. Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J Am Chem Soc 2006;128:15090-1. [PMID: 17117851 DOI: 10.1021/ja066442d] [Cited by in Crossref: 204] [Cited by in F6Publishing: 170] [Article Influence: 13.6] [Reference Citation Analysis]
64 Singh N, Jenkins GJ, Nelson BC, Marquis BJ, Maffeis TG, Brown AP, Williams PM, Wright CJ, Doak SH. The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials 2012;33:163-70. [PMID: 22027595 DOI: 10.1016/j.biomaterials.2011.09.087] [Cited by in Crossref: 104] [Cited by in F6Publishing: 89] [Article Influence: 9.5] [Reference Citation Analysis]
65 Ichikawa T, Araki T. Fast magnetic resonance imaging of liver. Eur J Radiol. 1999;29:186-210. [PMID: 10399607 DOI: 10.1016/s0720-048x(98)00176-4] [Cited by in Crossref: 30] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
66 Ward J, Baudouin CJ, Ridgway JP, Robinson PJ. Magnetic resonance imaging in the detection of focal liver lesions: comparison of dynamic contrast-enhanced TurboFLASH and T2 weighted spin echo images. Br J Radiol. 1995;68:463-470. [PMID: 7788230 DOI: 10.1259/0007-1285-68-809-463] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 0.7] [Reference Citation Analysis]
67 Oh KS, Yuk SH. Hydrogels-Based Drug Delivery System with Molecular Imaging. In: Ottenbrite RM, Park K, Okano T, editors. Biomedical Applications of Hydrogels Handbook. New York: Springer; 2010. pp. 179-200. [DOI: 10.1007/978-1-4419-5919-5_10] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
68 Liu S, Chiu-Lam A, Rivera-Rodriguez A, DeGroff R, Savliwala S, Sarna N, Rinaldi-Ramos CM. Long circulating tracer tailored for magnetic particle imaging. Nanotheranostics 2021;5:348-61. [PMID: 33850693 DOI: 10.7150/ntno.58548] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Shen CC, Liang HJ, Wang CC, Liao MH, Jan TR. Iron oxide nanoparticles suppressed T helper 1 cell-mediated immunity in a murine model of delayed-type hypersensitivity. Int J Nanomedicine 2012;7:2729-37. [PMID: 22701318 DOI: 10.2147/IJN.S31054] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 0.8] [Reference Citation Analysis]
70 Park J, Cho W, Park HJ, Cha KH, Ha DC, Choi YW, Lee HY, Cho SH, Hwang SJ. Biodistribution of newly synthesized PHEA-based polymer-coated SPION in Sprague Dawley rats as magnetic resonance contrast agent. Int J Nanomedicine 2013;8:4077-89. [PMID: 24204138 DOI: 10.2147/IJN.S51684] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.1] [Reference Citation Analysis]
71 Kakite S, Fujii S, Nakamatsu S, Kanasaki Y, Yamashita E, Matsusue E, Ouchi Y, Kaminou T, Tokunaga S, Koda M. Usefulness of administration of SPIO prior to RF ablation for evaluation of the therapeutic effect: an experimental study using miniature pigs. Eur J Radiol. 2011;78:282-286. [PMID: 21296516 DOI: 10.1016/j.ejrad.2011.01.048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 0.4] [Reference Citation Analysis]
72 Frtús A, Smolková B, Uzhytchak M, Lunova M, Jirsa M, Kubinová Š, Dejneka A, Lunov O. Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. Journal of Controlled Release 2020;328:59-77. [DOI: 10.1016/j.jconrel.2020.08.036] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 10.5] [Reference Citation Analysis]
73 Cheng WZ, Zeng MS, Yan FH, Rao SX, Shen JZ, Chen CZ, Zhang SJ, Shi WB. Ferucarbotran versus Gd-DTPA-enhanced MR imaging in the detection of focal hepatic lesions. World J Gastroenterol 2007; 13(36): 4891-4896 [PMID: 17828821 DOI: 10.3748/wjg.v13.i36.4891] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.1] [Reference Citation Analysis]
74 Lee J, Kumari N, Kim SM, Kim S, Jeon K, Im GH, Jang M, Lee WJ, Lee JH, Lee IS. Anchoring Ligand-Effect on Bright Contrast-Enhancing Property of Hollow Mn 3 O 4 Nanoparticle in T 1 -Weighted Magnetic Resonance Imaging. Chem Mater 2018;30:4056-64. [DOI: 10.1021/acs.chemmater.8b00854] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
75 Lunov O, Syrovets T, Büchele B, Jiang X, Röcker C, Tron K, Nienhaus GU, Walther P, Mailänder V, Landfester K, Simmet T. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages. Biomaterials 2010;31:5063-71. [DOI: 10.1016/j.biomaterials.2010.03.023] [Cited by in Crossref: 117] [Cited by in F6Publishing: 114] [Article Influence: 9.8] [Reference Citation Analysis]
76 Uzhytchak M, Smolková B, Lunova M, Jirsa M, Frtús A, Kubinová Š, Dejneka A, Lunov O. Iron Oxide Nanoparticle-Induced Autophagic Flux Is Regulated by Interplay between p53-mTOR Axis and Bcl-2 Signaling in Hepatic Cells. Cells 2020;9:E1015. [PMID: 32325714 DOI: 10.3390/cells9041015] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
77 Araya T, Kasahara K, Nishikawa S, Kimura H, Sone T, Nagae H, Ikehata Y, Nagano I, Fujimura M. Antitumor effects of inductive hyperthermia using magnetic ferucarbotran nanoparticles on human lung cancer xenografts in nude mice. Onco Targets Ther 2013;6:237-42. [PMID: 23569387 DOI: 10.2147/OTT.S42815] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 1.1] [Reference Citation Analysis]
78 Gitsioudis G, Fortner P, Stuber M, Missiou A, Andre F, Müller OJ, Katus HA, Korosoglou G. Off-resonance magnetic resonance angiography improves visualization of in-stent lumen in peripheral nitinol stents compared to conventional T1-weighted acquisitions: an in vitro comparison study. Int J Cardiovasc Imaging 2016;32:1645-55. [PMID: 27535040 DOI: 10.1007/s10554-016-0955-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
79 Chrishtop VV, Mironov VA, Prilepskii AY, Nikonorova VG, Vinogradov VV. Organ-specific toxicity of magnetic iron oxide-based nanoparticles. Nanotoxicology 2021;15:167-204. [PMID: 33216662 DOI: 10.1080/17435390.2020.1842934] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
80 Namkung S, Zech CJ, Helmberger T, Reiser MF, Schoenberg SO. Superparamagnetic iron oxide (SPIO)-enhanced liver MRI with ferucarbotran: efficacy for characterization of focal liver lesions. J Magn Reson Imaging 2007;25:755-65. [PMID: 17335040 DOI: 10.1002/jmri.20873] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 2.5] [Reference Citation Analysis]
81 [DOI: 10.1063/1.4980343] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
82 Hori M, Murakami T, Kim T, Iannaccone R, Abe H, Onishi H, Tomoda K, Catalano C, Passariello R, Nakamura H. Hemodynamic characterization of focal hepatic lesions: Role of ferucarbotran-enhanced dynamic MR imaging using T2-weighted multishot spin-echo echo-planar sequence. J Magn Reson Imaging 2006;23:509-19. [DOI: 10.1002/jmri.20542] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.3] [Reference Citation Analysis]
83 Filler AG, Lever AM. Effects of cation substitutions on reverse transcriptase and on human immunodeficiency virus production. AIDS Res Hum Retroviruses 1997;13:291-9. [PMID: 9071428 DOI: 10.1089/aid.1997.13.291] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 0.6] [Reference Citation Analysis]
84 Fishbein M, Long F, Smith M. Fast gradient echo MR imaging of the liver enhanced with superparamagnetic iron oxide. Magnetic Resonance Imaging 1997;15:651-5. [DOI: 10.1016/s0730-725x(97)00019-2] [Cited by in Crossref: 1] [Article Influence: 0.0] [Reference Citation Analysis]
85 Mahfouz A, Hamm B. CONTRAST AGENTS. Magnetic Resonance Imaging Clinics of North America 1997;5:223-40. [DOI: 10.1016/s1064-9689(21)00194-x] [Cited by in Crossref: 2] [Article Influence: 0.1] [Reference Citation Analysis]
86 Yeh C, Hsiao J, Wang J, Sheu F. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritoneal macrophages. J Nanopart Res 2010;12:151-60. [DOI: 10.1007/s11051-009-9589-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
87 Remmele S, Ring J, Sénégas J, Heindel W, Mesters RM, Bremer C, Persigehl T. Concurrent MR blood volume and vessel size estimation in tumors by robust and simultaneous ΔR2 and ΔR2* quantification. Magn Reson Med 2011;66:144-53. [PMID: 21305604 DOI: 10.1002/mrm.22810] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 1.2] [Reference Citation Analysis]
88 Bell G, Bogart LK, Southern P, Olivo M, Pankhurst QA, Parkin IP. Enhancing the Magnetic Heating Capacity of Iron Oxide Nanoparticles through Their Postproduction Incorporation into Iron Oxide-Gold Nanocomposites: Enhancing the Magnetic Heating Capacity of Iron Oxide Nanoparticles through Their Postproduction Incorporation into Iron Oxide-Gold Nanocomposites. Eur J Inorg Chem 2017;2017:2386-95. [DOI: 10.1002/ejic.201601432] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.4] [Reference Citation Analysis]
89 Lutz AM, Willmann JK, Goepfert K, Marincek B, Weishaupt D. Hepatocellular carcinoma in cirrhosis: enhancement patterns at dynamic gadolinium- and superparamagnetic iron oxide-enhanced T1-weighted MR imaging. Radiology. 2005;237:520-528. [PMID: 16192317 DOI: 10.1148/radiol.2372041183] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 2.8] [Reference Citation Analysis]
90 Reimer P, Schuierer G, Balzer T, Peters PE. Application of a superparamagnetic iron oxide (Resovis®) for MR imaging of human cerebral blood volume. Magn Reson Med 1995;34:694-7. [DOI: 10.1002/mrm.1910340507] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 1.0] [Reference Citation Analysis]
91 Lunov O, Zablotskii V, Syrovets T, Röcker C, Tron K, Nienhaus GU, Simmet T. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials 2011;32:547-55. [PMID: 20880574 DOI: 10.1016/j.biomaterials.2010.08.111] [Cited by in Crossref: 109] [Cited by in F6Publishing: 104] [Article Influence: 9.1] [Reference Citation Analysis]
92 Lunov O, Syrovets T, Röcker C, Tron K, Nienhaus GU, Rasche V, Mailänder V, Landfester K, Simmet T. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes. Biomaterials 2010;31:9015-22. [PMID: 20739059 DOI: 10.1016/j.biomaterials.2010.08.003] [Cited by in Crossref: 134] [Cited by in F6Publishing: 123] [Article Influence: 11.2] [Reference Citation Analysis]
93 Taupitz M, Wagner S, Schnorr J, Kravec I, Pilgrimm H, Bergmann-fritsch H, Hamm B. Phase I Clinical Evaluation of Citrate-coated Monocrystalline Very Small Superparamagnetic Iron Oxide Particles as a New Contrast Medium for Magnetic Resonance Imaging. Investigative Radiology 2004;39:394-405. [DOI: 10.1097/01.rli.0000129472.45832.b0] [Cited by in Crossref: 115] [Cited by in F6Publishing: 101] [Article Influence: 6.4] [Reference Citation Analysis]
94 Yang HW, Hua MY, Lin KJ, Wey SP, Tsai RY, Wu SY, Lu YC, Liu HL, Wu T, Ma YH. Bioconjugation of recombinant tissue plasminogen activator to magnetic nanocarriers for targeted thrombolysis. Int J Nanomedicine 2012;7:5159-73. [PMID: 23055728 DOI: 10.2147/IJN.S32939] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 0.4] [Reference Citation Analysis]
95 Haegele J, Duschka RL, Graeser M, Schaecke C, Panagiotopoulos N, Lüdtke-Buzug K, Buzug TM, Barkhausen J, Vogt FM. Magnetic particle imaging: kinetics of the intravascular signal in vivo. Int J Nanomedicine 2014;9:4203-9. [PMID: 25214784 DOI: 10.2147/IJN.S49976] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
96 Park YJ, Nah SH, Lee JY, Jeong JM, Chung JK, Lee MC, Yang VC, Lee SJ. Surface-modified poly(lactide- co -glycolide) nanospheres for targeted bone imaging with enhanced labeling and delivery of radioisotope. J Biomed Mater Res 2003;67A:751-60. [DOI: 10.1002/jbm.a.10167] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
97 Petersein J, Saini S, Weissleder R. LIVER II: IRON OXIDE-BASED RETICULOENDOTHELIAL CONTRAST AGENTS FOR MR IMAGING. Magnetic Resonance Imaging Clinics of North America 1996;4:53-60. [DOI: 10.1016/s1064-9689(21)00553-5] [Cited by in Crossref: 18] [Article Influence: 0.7] [Reference Citation Analysis]
98 Schnorr J, Wagner S, Abramjuk C, Drees R, Schink T, Schellenberger EA, Pilgrimm H, Hamm B, Taupitz M. Focal liver lesions: SPIO-, gadolinium-, and ferucarbotran-enhanced dynamic T1-weighted and delayed T2-weighted MR imaging in rabbits. Radiology 2006;240:90-100. [PMID: 16684917 DOI: 10.1148/radiol.2393040884] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 1.8] [Reference Citation Analysis]
99 Thode K, Lück M, Semmler W, Müller RH, Kresse M. Determination of plasma protein adsorption on magnetic iron oxides: sample preparation. Pharm Res 1997;14:905-10. [PMID: 9244148 DOI: 10.1023/a:1012104017761] [Cited by in Crossref: 56] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
100 Raabe N, Forberich E, Freund B, Bruns OT, Heine M, Kaul MG, Tromsdorf U, Herich L, Nielsen P, Reimer R, Hohenberg H, Weller H, Schumacher U, Adam G, Ittrich H. Determination of liver-specific r2 * of a highly monodisperse USPIO by (59) Fe iron core-labeling in mice at 3 T MRI. Contrast Media Mol Imaging 2015;10:153-62. [PMID: 25078884 DOI: 10.1002/cmmi.1612] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
101 Reimer P, Jähnke N, Fiebich M, Schima W, Deckers F, Marx C, Holzknecht N, Saini S. Hepatic lesion detection and characterization: value of nonenhanced MR imaging, superparamagnetic iron oxide-enhanced MR imaging, and spiral CT-ROC analysis. Radiology. 2000;217:152-158. [PMID: 11012438 DOI: 10.1148/radiology.217.1.r00oc31152] [Cited by in Crossref: 141] [Cited by in F6Publishing: 122] [Article Influence: 6.4] [Reference Citation Analysis]
102 Lüdemann L, Schmitt B, Podrabsky P, Schnackenburg B, Böck J, Gutberlet M. Usage of the T1 effect of an iron oxide contrast agent in an animal model to quantify myocardial blood flow by MRI. European Journal of Radiology 2007;62:247-56. [DOI: 10.1016/j.ejrad.2006.12.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
103 Onishi H, Murakami T, Kim T, Hori M, Hirohashi S, Matsuki M, Narumi Y, Imai Y, Sakurai K, Nakamura H. Safety of ferucarbotran in MR imaging of the liver: a pre- and postexamination questionnaire-based multicenter investigation. J Magn Reson Imaging 2009;29:106-11. [PMID: 19097079 DOI: 10.1002/jmri.21608] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 0.9] [Reference Citation Analysis]
104 Yang H, Hua M, Hwang T, Lin K, Huang C, Tsai R, Ma CM, Hsu P, Wey S, Hsu P, Chen P, Huang Y, Lu Y, Yen T, Feng L, Lin C, Liu H, Wei K. Non-Invasive Synergistic Treatment of Brain Tumors by Targeted Chemotherapeutic Delivery and Amplified Focused Ultrasound-Hyperthermia Using Magnetic Nanographene Oxide. Adv Mater 2013;25:3605-11. [DOI: 10.1002/adma.201301046] [Cited by in Crossref: 67] [Cited by in F6Publishing: 58] [Article Influence: 7.4] [Reference Citation Analysis]
105 Heilmaier C, Lutz AM, Bolog N, Weishaupt D, Seifert B, Willmann JK. Focal liver lesions: detection and characterization at double-contrast liver MR Imaging with ferucarbotran and gadobutrol versus single-contrast liver MR imaging. Radiology 2009;253:724-33. [PMID: 19789232 DOI: 10.1148/radiol.2533090161] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
106 Bao Y, Sherwood JA, Sun Z. Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J Mater Chem C 2018;6:1280-90. [DOI: 10.1039/c7tc05854c] [Cited by in Crossref: 106] [Cited by in F6Publishing: 2] [Article Influence: 26.5] [Reference Citation Analysis]
107 Bremer C, Allkemper T, Baermig J, Reimer P. RES-specific imaging of the liver and spleen with iron oxide particles designed for blood pool MR-angiography. J Magn Reson Imaging 1999;10:461-7. [DOI: 10.1002/(sici)1522-2586(199909)10:3<461::aid-jmri30>3.0.co;2-5] [Cited by in Crossref: 27] [Article Influence: 1.2] [Reference Citation Analysis]
108 Macher T, Totenhagen J, Sherwood J, Qin Y, Gurler D, Bolding MS, Bao Y. Ultrathin Iron Oxide Nanowhiskers as Positive Contrast Agents for Magnetic Resonance Imaging. Adv Funct Mater 2015;25:490-4. [DOI: 10.1002/adfm.201403436] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
109 Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016;116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Cited by in Crossref: 872] [Cited by in F6Publishing: 723] [Article Influence: 145.3] [Reference Citation Analysis]
110 Park Y, Choi D, Kim SH, Kim SH, Kim MJ, Lee J, Lim JH, Lee WJ, Lim HK. Changes in signal-to-noise ratios and contrast-to-noise ratios of hypervascular hepatocellular carcinomas on ferucarbotran-enhanced dynamic MR imaging. European Journal of Radiology 2006;59:424-31. [DOI: 10.1016/j.ejrad.2006.06.018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
111 Martínez-Banderas AI, Aires A, Plaza-García S, Colás L, Moreno JA, Ravasi T, Merzaban JS, Ramos-Cabrer P, Cortajarena AL, Kosel J. Magnetic core-shell nanowires as MRI contrast agents for cell tracking. J Nanobiotechnology 2020;18:42. [PMID: 32164746 DOI: 10.1186/s12951-020-00597-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
112 Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 2019;138:302-25. [PMID: 30639256 DOI: 10.1016/j.addr.2019.01.005] [Cited by in Crossref: 250] [Cited by in F6Publishing: 185] [Article Influence: 83.3] [Reference Citation Analysis]
113 Wang R, Billone PS, Mullett WM. Nanomedicine in Action: An Overview of Cancer Nanomedicine on the Market and in Clinical Trials. Journal of Nanomaterials 2013;2013:1-12. [DOI: 10.1155/2013/629681] [Cited by in Crossref: 50] [Cited by in F6Publishing: 16] [Article Influence: 5.6] [Reference Citation Analysis]
114 Kuhlpeter R, Dahnke H, Matuszewski L, Persigehl T, von Wallbrunn A, Allkemper T, Heindel WL, Schaeffter T, Bremer C. R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology 2007;245:449-57. [PMID: 17848680 DOI: 10.1148/radiol.2451061345] [Cited by in Crossref: 85] [Cited by in F6Publishing: 83] [Article Influence: 5.7] [Reference Citation Analysis]
115 Ichihashi S, Marugami N, Tanaka T, Iwakoshi S, Kurumatani N, Kitano S, Nogi A, Kichikawa K. Preliminary experience with superparamagnetic iron oxide-enhanced dynamic magnetic resonance imaging and comparison with contrast-enhanced computed tomography in endoleak detection after endovascular aneurysm repair. Journal of Vascular Surgery 2013;58:66-72. [DOI: 10.1016/j.jvs.2012.12.061] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
116 Karlsson HL, Toprak MS, Fadeel B. Toxicity of Metal and Metal Oxide Nanoparticles. Handbook on the Toxicology of Metals. Elsevier; 2015. pp. 75-112. [DOI: 10.1016/b978-0-444-59453-2.00004-4] [Cited by in Crossref: 18] [Article Influence: 2.6] [Reference Citation Analysis]
117 Frenzel T, Lawaczeck R, Taupitz M, Jost G, Lohrke J, Sieber MA, Pietsch H. Contrast Media for X-ray and Magnetic Resonance Imaging: Development, Current Status and Future Perspectives. Investigative Radiology 2015;50:671-8. [DOI: 10.1097/rli.0000000000000193] [Cited by in Crossref: 16] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
118 Mori K, Fukuda K, Asaoka H, Ueda T, Kunimatsu A, Okamoto Y, Nasu K, Fukunaga K, Morishita Y, Minami M. Radiofrequency ablation of the liver: determination of ablative margin at MR imaging with impaired clearance of ferucarbotran--feasibility study. Radiology. 2009;251:557-565. [PMID: 19251941 DOI: 10.1148/radiol.2512081161] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 2.7] [Reference Citation Analysis]
119 Salunkhe A, Khot V, Thorat N, Phadatare M, Sathish C, Dhawale D, Pawar S. Polyvinyl alcohol functionalized cobalt ferrite nanoparticles for biomedical applications. Applied Surface Science 2013;264:598-604. [DOI: 10.1016/j.apsusc.2012.10.073] [Cited by in Crossref: 131] [Cited by in F6Publishing: 69] [Article Influence: 14.6] [Reference Citation Analysis]
120 Metz S, Beer AJ, Settles M, Pelisek J, Botnar RM, Rummeny EJ, Heider P. Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. Int J Cardiovasc Imaging 2011;27:901-12. [PMID: 20972832 DOI: 10.1007/s10554-010-9736-7] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 2.4] [Reference Citation Analysis]
121 Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta (BBA) - General Subjects 2011;1810:361-73. [DOI: 10.1016/j.bbagen.2010.04.007] [Cited by in Crossref: 322] [Cited by in F6Publishing: 279] [Article Influence: 29.3] [Reference Citation Analysis]
122 Balzer T, Carter EC, Shamsi K, Niendorf HP. Results of a multicenter phase II clinical trial with a susceptibility contrast medium for magnetic resonance imaging of the liver. Acad Radiol 1996;3 Suppl 2:S417-9. [PMID: 8796619 DOI: 10.1016/s1076-6332(96)80603-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
123 Robinson P. The characterization of liver tumours by MRI. Clinical Radiology 1996;51:749-61. [DOI: 10.1016/s0009-9260(96)80002-x] [Cited by in Crossref: 12] [Article Influence: 0.5] [Reference Citation Analysis]
124 Xu Y, Baiu DC, Sherwood JA, McElreath MR, Qin Y, Lackey KH, Otto M, Bao Y. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles. J Mater Chem B 2014;2:6198-206. [PMID: 26660881 DOI: 10.1039/C4TB00840E] [Cited by in Crossref: 28] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
125 Tokunaga S, Koda M, Matono T, Sugihara T, Nagahara T, Ueki M, Murawaki Y, Kakite S, Yamashita E. Assessment of ablative margin by MRI with ferucarbotran in radiofrequency ablation for liver cancer: comparison with enhanced CT. Br J Radiol 2012;85:745-52. [PMID: 21385915 DOI: 10.1259/bjr/64518148] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.3] [Reference Citation Analysis]
126 Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S, Toprak MS, Buerki-Thurnherr T, Laurent S, Vahter M, Krug H, Muhammed M, Scheynius A, Fadeel B. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol 2011;253:81-93. [PMID: 21435349 DOI: 10.1016/j.taap.2011.03.011] [Cited by in Crossref: 123] [Cited by in F6Publishing: 101] [Article Influence: 11.2] [Reference Citation Analysis]
127 Tombach B, Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, Heindel W. First-pass and equilibrium-MRA of the aortoiliac region with a superparamagnetic iron oxide blood pool MR contrast agent (SH U 555 C): results of a human pilot study. NMR Biomed 2004;17:500-6. [DOI: 10.1002/nbm.906] [Cited by in Crossref: 53] [Cited by in F6Publishing: 47] [Article Influence: 2.9] [Reference Citation Analysis]
128 Ishida T, Murakami T, Kato N, Takahashi M, Miyazawa T, Tsuda K, Tomoda K, Narumi Y, Nakamura H. Superparamagnetic Iron Oxide Enhanced Magnetic Resonance Imaging of Rat Liver with Hepatocellular Carcinoma and Benign Hyperplastic Nodule: . INVESTIGATIVE RADIOLOGY 1997;32:282-7. [DOI: 10.1097/00004424-199705000-00005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 0.4] [Reference Citation Analysis]
129 Furuta T, Yamaguchi M, Nakagami R, Akahane M, Minami M, Ohtomo K, Fujii H. Delayed hepatic signal recovery on ferucarbotran-enhanced magnetic resonance images in a rat model with regional liver irradiation. MAGMA 2014;27:501-8. [PMID: 24570338 DOI: 10.1007/s10334-014-0434-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
130 Masui T, Yan H, Kosugi I, Sakamoto S, Nishimura T, Takahashi M, Kaneko M, Fritz-zieroth B. Assessment of Early Radiation Effects on the Liver: Comparison of Spect and Mr. Acta Radiol 1996;37:665-71. [DOI: 10.1177/02841851960373p249] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
131 Chen F, Ward J, Robinson P. MR imaging of the liver and spleen: a comparison of the effects on signal intensity of two superparamagnetic iron oxide agents. Magnetic Resonance Imaging 1999;17:549-56. [DOI: 10.1016/s0730-725x(98)00193-3] [Cited by in Crossref: 28] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
132 Narkhede AA, Sherwood JA, Antone A, Coogan KR, Bolding MS, Deb S, Bao Y, Rao SS. Role of Surface Chemistry in Mediating the Uptake of Ultrasmall Iron Oxide Nanoparticles by Cancer Cells. ACS Appl Mater Interfaces 2019;11:17157-66. [DOI: 10.1021/acsami.9b00606] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
133 Gandhi SN, Brown MA, Wong JG, Aguirre DA, Sirlin CB. MR contrast agents for liver imaging: what, when, how. Radiographics. 2006;26:1621-1636. [PMID: 17102040 DOI: 10.1148/rg.266065014] [Cited by in Crossref: 103] [Cited by in F6Publishing: 83] [Article Influence: 6.4] [Reference Citation Analysis]