BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Falconer RJ. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015. J Mol Recognit 2016;29:504-15. [PMID: 27221459 DOI: 10.1002/jmr.2550] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 10.2] [Reference Citation Analysis]
Number Citing Articles
1 Wilhelm E. In Memoriam: Jean-Pierre E. Grolier (1936–2022). J Solution Chem. [DOI: 10.1007/s10953-022-01166-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Gygli G. On the reproducibility of enzyme reactions and kinetic modelling. Biol Chem 2022. [PMID: 35357794 DOI: 10.1515/hsz-2021-0393] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zakšauskas A, Čapkauskaitė E, Paketurytė-Latvė V, Smirnov A, Leitans J, Kazaks A, Dvinskis E, Stančaitis L, Mickevičiūtė A, Jachno J, Jezepčikas L, Linkuvienė V, Sakalauskas A, Manakova E, Gražulis S, Matulienė J, Tars K, Matulis D. Methyl 2-Halo-4-Substituted-5-Sulfamoyl-Benzoates as High Affinity and Selective Inhibitors of Carbonic Anhydrase IX. Int J Mol Sci 2021;23:130. [PMID: 35008553 DOI: 10.3390/ijms23010130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Zhuge XL, Xie T, Du X, Zhang XX, Hu JP, Yang HL. Non-synonymous substitution of evolutionarily conserved residue in Tau class glutathione transferases alters structural and catalytic features. Int J Biol Macromol 2021;197:39-48. [PMID: 34896469 DOI: 10.1016/j.ijbiomac.2021.12.040] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Chen J, Tian W, Yun Y, Tian Y, Sun C, Ding R, Chen H. A discussion on the affecting factors of the fitting procedures' reliability in isothermal titration calorimetry analysis. Arch Biochem Biophys 2021;713:109045. [PMID: 34627750 DOI: 10.1016/j.abb.2021.109045] [Reference Citation Analysis]
6 Nestorow SA, Dafforn TR, Frasca V. Biophysical characterisation of SMALPs. Biochem Soc Trans 2021;49:2037-50. [PMID: 34643233 DOI: 10.1042/BST20201088] [Reference Citation Analysis]
7 Ott F, Rabe KS, Niemeyer CM, Gygli G. Toward Reproducible Enzyme Modeling with Isothermal Titration Calorimetry. ACS Catal 2021;11:10695-704. [DOI: 10.1021/acscatal.1c02076] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Abiodun SL, Gee MY, Greytak AB. Combined NMR and Isothermal Titration Calorimetry Investigation Resolves Conditions for Ligand Exchange and Phase Transformation in CsPbBr 3 Nanocrystals. J Phys Chem C 2021;125:17897-905. [DOI: 10.1021/acs.jpcc.1c00144] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
9 Sainz-Ramos M, Gallego I, Villate-Beitia I, Zarate J, Maldonado I, Puras G, Pedraz JL. How Far Are Non-Viral Vectors to Come of Age and Reach Clinical Translation in Gene Therapy? Int J Mol Sci 2021;22:7545. [PMID: 34299164 DOI: 10.3390/ijms22147545] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
10 Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recognit 2021;34:e2901. [PMID: 33975380 DOI: 10.1002/jmr.2901] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
11 Paketurytė V, Petrauskas V, Zubrienė A, Abian O, Bastos M, Chen WY, Moreno MJ, Krainer G, Linkuvienė V, Sedivy A, Velazquez-Campoy A, Williams MA, Matulis D. Uncertainty in protein-ligand binding constants: asymmetric confidence intervals versus standard errors. Eur Biophys J 2021;50:661-70. [PMID: 33837826 DOI: 10.1007/s00249-021-01518-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
12 Garrido PF, Bastos M, Velázquez-Campoy A, Dumas P, Piñeiro Á. Fluid interface calorimetry. J Colloid Interface Sci 2021;596:119-29. [PMID: 33839346 DOI: 10.1016/j.jcis.2021.03.098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Judy E, Kishore N. Discrepancies in Thermodynamic Information Obtained from Calorimetry and Spectroscopy in Ligand Binding Reactions: Implications on Correct Analysis in Systems of Biological Importance. BCSJ 2021;94:473-85. [DOI: 10.1246/bcsj.20200248] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Ge X, Chen L, Li D, Liu R, Ge G. Estimation of non-constant variance in isothermal titration calorimetry using an ITC measurement model. PLoS One 2020;15:e0244739. [PMID: 33378411 DOI: 10.1371/journal.pone.0244739] [Reference Citation Analysis]
15 Gee MY, Shen Y, Greytak AB. Isothermal Titration Calorimetry Resolves Sequential Ligand Exchange and Association Reactions in Treatment of Oleate-Capped CdSe Quantum Dots with Alkylphosphonic Acid. J Phys Chem C 2020;124:23964-75. [DOI: 10.1021/acs.jpcc.0c07338] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
16 Kempapidis T, Bradshaw NJ, Hodges HE, Cowieson AJ, Cameron DD, Falconer RJ. Phytase catalysis of dephosphorylation studied using isothermal titration calorimetry and electrospray ionization time-of-flight mass spectroscopy. Analytical Biochemistry 2020;606:113859. [DOI: 10.1016/j.ab.2020.113859] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Kieffer C, Jourdan JP, Jouanne M, Voisin-chiret AS. Noncellular screening for the discovery of protein–protein interaction modulators. Drug Discovery Today 2020;25:1592-603. [DOI: 10.1016/j.drudis.2020.07.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Menéndez M. Isothermal Titration Calorimetry: Principles and Applications. In: John Wiley & Sons, Ltd, editor. eLS. Wiley; 2001. pp. 113-27. [DOI: 10.1002/9780470015902.a0028808] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Guo S, Wang H, Tricard S, Zheng P, Sun A, Fang J, Zhao J. Synthesis of Trimetallic Prussian Blue Analogues and Catalytic Application for the Epoxidation of Styrene. Ind Eng Chem Res 2020;59:13831-40. [DOI: 10.1021/acs.iecr.0c01715] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
20 Singh N, Li W. Absolute Binding Free Energy Calculations for Highly Flexible Protein MDM2 and Its Inhibitors. Int J Mol Sci 2020;21:E4765. [PMID: 32635537 DOI: 10.3390/ijms21134765] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
21 Catalano M, Oehler S, Prati L, Favalli N, Bassi G, Scheuermann J, Neri D. Complexation with a Cognate Antibody Fragment Facilitates Affinity Measurements of Fluorescein-Linked Small Molecule Ligands. Anal Chem 2020;92:10822-9. [DOI: 10.1021/acs.analchem.0c02304] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
22 Liu X, Zhang X, Lv D, Yuan Y, Zheng G, Zhou D. Assays and technologies for developing proteolysis targeting chimera degraders. Future Med Chem 2020;12:1155-79. [PMID: 32431173 DOI: 10.4155/fmc-2020-0073] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
23 Kammer MN, Kussrow AK, Olmsted IR, Jackson GW, Bornhop DJ. Free Solution Assay Signal Modulation in Variable-Stem-Length Hairpin Aptamers. ACS Omega 2020;5:11308-13. [DOI: 10.1021/acsomega.9b04341] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Mutalik SP, Pandey A, Mutalik S. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. International Journal of Biological Macromolecules 2020;151:136-58. [DOI: 10.1016/j.ijbiomac.2020.02.150] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
25 Sedov I, Nikiforova A, Khaibrakhmanova D. Evaluation of the binding properties of drugs to albumin from DSC thermograms. Int J Pharm 2020;583:119362. [PMID: 32334069 DOI: 10.1016/j.ijpharm.2020.119362] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Gauglitz G. Critical assessment of relevant methods in the field of biosensors with direct optical detection based on fibers and waveguides using plasmonic, resonance, and interference effects. Anal Bioanal Chem 2020;412:3317-49. [PMID: 32313998 DOI: 10.1007/s00216-020-02581-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 25] [Article Influence: 8.5] [Reference Citation Analysis]
27 Al Qtaish N, Gallego I, Villate-Beitia I, Sainz-Ramos M, López-Méndez TB, Grijalvo S, Eritja R, Soto-Sánchez C, Martínez-Navarrete G, Fernández E, Puras G, Pedraz JL. Niosome-Based Approach for In Situ Gene Delivery to Retina and Brain Cortex as Immune-Privileged Tissues. Pharmaceutics 2020;12:E198. [PMID: 32106545 DOI: 10.3390/pharmaceutics12030198] [Cited by in Crossref: 10] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
28 Sandoval PJ, Santiago J. In Vitro Analytical Approaches to Study Plant Ligand-Receptor Interactions. Plant Physiol 2020;182:1697-712. [PMID: 32034053 DOI: 10.1104/pp.19.01396] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
29 Huang B, Liu Y, Yao H, Zhao Y. NMR-based investigation into protein phosphorylation. International Journal of Biological Macromolecules 2020;145:53-63. [DOI: 10.1016/j.ijbiomac.2019.12.171] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
30 Debolinamitra. Use of isothermal titration calorimetry to study various systems. Materials Today: Proceedings 2020;23:284-300. [DOI: 10.1016/j.matpr.2020.02.027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Giussi JM, Martínez Moro M, Iborra A, Cortez ML, Di Silvio D, Llarena Conde I, Longo GS, Azzaroni O, Moya S. A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly( N -isopropylacrylamide- co -methacrylic acid) microgels. Soft Matter 2020;16:881-90. [DOI: 10.1039/c9sm02070e] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
32 Ali NSM, Salleh AB, Rahman RNZRA, Leow TC, Ali MSM. Calcium-Induced Activity and Folding of a Repeat in Toxin Lipase from Antarctic Pseudomonas fluorescens Strain AMS8. Toxins (Basel) 2020;12:E27. [PMID: 31906409 DOI: 10.3390/toxins12010027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Sprakel LM, Keijsper DJ, Nikolova AL, Schuur B. Predicting solvent effects on relative volatility behavior in extractive distillation using isothermal titration calorimetry (ITC) and molecular modeling (MM). Chemical Engineering Science 2019;210:115203. [DOI: 10.1016/j.ces.2019.115203] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
34 Ferenczy GG, Keserű GM. Thermodynamic profiling for fragment-based lead discovery and optimization. Expert Opin Drug Discov 2020;15:117-29. [PMID: 31741402 DOI: 10.1080/17460441.2020.1691166] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
35 Linkuvienė V, Zubrienė A, Manakova E, Petrauskas V, Baranauskienė L, Zakšauskas A, Smirnov A, Gražulis S, Ladbury JE, Matulis D. Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2018;51:e10. [PMID: 30912486 DOI: 10.1017/S0033583518000082] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
36 Li X, Jiao W, Zhang W, Xu Y, Cao J, Jiang W. Characterizing the Interactions of Dietary Condensed Tannins with Bile Salts. J Agric Food Chem 2019;67:9543-50. [DOI: 10.1021/acs.jafc.9b03985] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
37 Oliva R, Battista F, Cozzolino S, Notomista E, Winter R, Del Vecchio P, Petraccone L. Encapsulating properties of sulfobutylether-β-cyclodextrin toward a thrombin-derived antimicrobial peptide. J Therm Anal Calorim 2019;138:3249-56. [DOI: 10.1007/s10973-019-08609-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
38 Sprakel LM, Schuur B. Molecular design and engineering for affinity separation processes using isothermal titration calorimetry (ITC) and molecular modeling (MM). Journal of Molecular Liquids 2019;283:312-24. [DOI: 10.1016/j.molliq.2019.03.060] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Klebe G. Broad-scale analysis of thermodynamic signatures in medicinal chemistry: are enthalpy-favored binders the better development option? Drug Discov Today 2019;24:943-8. [PMID: 30708050 DOI: 10.1016/j.drudis.2019.01.014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
40 Thoma M, Lin W, Hoffmann E, Sattes M, Segets D, Damm C, Peukert W. Simple and Reliable Method for Studying the Adsorption Behavior of Aquivion Ionomers on Carbon Black Surfaces. Langmuir 2018;34:12324-34. [DOI: 10.1021/acs.langmuir.8b02726] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 3.3] [Reference Citation Analysis]
41 Li A, Gilson MK. Protein-ligand binding enthalpies from near-millisecond simulations: Analysis of a preorganization paradox. J Chem Phys 2018;149:072311. [PMID: 30134726 DOI: 10.1063/1.5027439] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
42 Baranauskiene L, Kuo TC, Chen WY, Matulis D. Isothermal titration calorimetry for characterization of recombinant proteins. Curr Opin Biotechnol 2019;55:9-15. [PMID: 30031160 DOI: 10.1016/j.copbio.2018.06.003] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
43 Sprakel LMJ, Schuur B. Thermal Activity in Affinity Separation Techniques Such as Liquid-Liquid Extraction Analyzed by Isothermal Titration Calorimetry and Accuracy Analysis of the Technique in the Molar Concentration Domain. Ind Eng Chem Res 2018;57:12574-82. [PMID: 30270979 DOI: 10.1021/acs.iecr.8b03066] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
44 Mboge MY, Kota A, McKenna R, Frost SC. Biophysical, Biochemical, and Cell Based Approaches Used to Decipher the Role of Carbonic Anhydrases in Cancer and to Evaluate the Potency of Targeted Inhibitors. Int J Med Chem 2018;2018:2906519. [PMID: 30112206 DOI: 10.1155/2018/2906519] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
45 Miyanabe K, Yamashita T, Abe Y, Akiba H, Takamatsu Y, Nakakido M, Hamakubo T, Ueda T, Caaveiro JMM, Tsumoto K. Tyrosine Sulfation Restricts the Conformational Ensemble of a Flexible Peptide, Strengthening the Binding Affinity for an Antibody. Biochemistry 2018;57:4177-85. [DOI: 10.1021/acs.biochem.8b00592] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
46 Ma W, Yang L, He L. Overview of the detection methods for equilibrium dissociation constant KD of drug-receptor interaction. J Pharm Anal 2018;8:147-52. [PMID: 29922482 DOI: 10.1016/j.jpha.2018.05.001] [Cited by in Crossref: 23] [Cited by in F6Publishing: 28] [Article Influence: 5.8] [Reference Citation Analysis]
47 Smirnov A, Zubrienė A, Manakova E, Gražulis S, Matulis D. Crystal structure correlations with the intrinsic thermodynamics of human carbonic anhydrase inhibitor binding. PeerJ 2018;6:e4412. [PMID: 29503769 DOI: 10.7717/peerj.4412] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
48 Luo L, Bai Y, Zhou G. Polysaccharides Reduce Absorption and Mutagenicity of 3-Amino-1,4-Dimethyl-5H-Pyrido[4,3-b]Indole In Vitro and In Vivo. J Food Sci 2018;83:565-73. [PMID: 29337342 DOI: 10.1111/1750-3841.14000] [Reference Citation Analysis]
49 Qiu Y, Gu C, Li B, Shi H. Aptameric detection of quinine in reclaimed wastewater using a personal glucose meter. Anal Methods 2018;10:2931-8. [DOI: 10.1039/c8ay00585k] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
50 Rosenberry TL, Brazzolotto X, Macdonald IR, Wandhammer M, Trovaslet-Leroy M, Darvesh S, Nachon F. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017;22:E2098. [PMID: 29186056 DOI: 10.3390/molecules22122098] [Cited by in Crossref: 64] [Cited by in F6Publishing: 84] [Article Influence: 12.8] [Reference Citation Analysis]
51 Kazokaitė J, Aspatwar A, Parkkila S, Matulis D. An update on anticancer drug development and delivery targeting carbonic anhydrase IX. PeerJ 2017;5:e4068. [PMID: 29181278 DOI: 10.7717/peerj.4068] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
52 Di Trani JM, Moitessier N, Mittermaier AK. Measuring Rapid Time-Scale Reaction Kinetics Using Isothermal Titration Calorimetry. Anal Chem 2017;89:7022-30. [PMID: 28590118 DOI: 10.1021/acs.analchem.7b00693] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 3.4] [Reference Citation Analysis]
53 Canterbury TR, Arachchige SM, Brewer KJ, Moore RB. Probing Co-Assembly of Supramolecular Photocatalysts and Polyelectrolytes Using Isothermal Titration Calorimetry. J Phys Chem B 2017;121:6238-44. [DOI: 10.1021/acs.jpcb.7b02462] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
54 Tesmar A, Wyrzykowski D, Muñoz E, Pilarski B, Pranczk J, Jacewicz D, Chmurzyński L. Simultaneous determination of thermodynamic and kinetic parameters of aminopolycarbonate complexes of cobalt(II) and nickel(II) based on isothermal titration calorimetry data: Thermodynamic and kinetic parameters of aminopolycarbonate complexes of cobalt(II) and nickel(II). J Mol Recognit 2017;30:e2589. [DOI: 10.1002/jmr.2589] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]