BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Diban N, Stamatialis D. Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications: Polymeric hollow fibers for Tissue Engineering. J Chem Technol Biotechnol 2014;89:633-43. [DOI: 10.1002/jctb.4300] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Ghotbi S, Pirzadeh B, Mohebbi-Kalhori D, Abdollahi A. Numerical investigation of UF membrane to reduce energy consumption using double porosity approach. Water Sci Technol 2018;77:2907-16. [PMID: 30065143 DOI: 10.2166/wst.2018.280] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
2 Nardo T, Carmagnola I, Ruini F, Caddeo S, Calzone S, Chiono V, Ciardelli G. Synthetic Biomaterial for Regenerative Medicine Applications. Kidney Transplantation, Bioengineering and Regeneration. Elsevier; 2017. pp. 901-21. [DOI: 10.1016/b978-0-12-801734-0.00065-5] [Cited by in Crossref: 5] [Article Influence: 1.3] [Reference Citation Analysis]
3 Jie M, Mao S, Liu H, He Z, Li HF, Lin JM. Evaluation of drug combination for glioblastoma based on an intestine-liver metabolic model on microchip. Analyst 2017;142:3629-38. [PMID: 28853486 DOI: 10.1039/c7an00453b] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 4.7] [Reference Citation Analysis]
4 Pinho AC, Fonseca AC, Serra AC, Santos JD, Coelho JF. Peripheral Nerve Regeneration: Current Status and New Strategies Using Polymeric Materials. Adv Healthc Mater 2016;5:2732-44. [PMID: 27600578 DOI: 10.1002/adhm.201600236] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 8.0] [Reference Citation Analysis]
5 Zarrintaj P, Saeb MR, Jafari SH, Mozafari M. Application of compatibilized polymer blends in biomedical fields. Compatibilization of Polymer Blends. Elsevier; 2020. pp. 511-37. [DOI: 10.1016/b978-0-12-816006-0.00018-9] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 10.0] [Reference Citation Analysis]
6 Refoyo R, Skouras E, Chevtchik N, Stamatialis D, Burganos V. Transport and reaction phenomena in multilayer membranes functioning as bioartificial kidney devices. Journal of Membrane Science 2018;565:61-71. [DOI: 10.1016/j.memsci.2018.08.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
7 Liu CH, Liu YX, Kumari M, Wu WC. Multivariate analysis of metabolic parameters and optimization of antibody production using high cell density hybridoma in hollow fiber bioreactors. Biotechnol Lett 2019;41:963-77. [PMID: 31325004 DOI: 10.1007/s10529-019-02712-3] [Reference Citation Analysis]
8 Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science & Technology 2016;48:40-50. [DOI: 10.1016/j.tifs.2015.11.007] [Cited by in Crossref: 464] [Cited by in F6Publishing: 241] [Article Influence: 92.8] [Reference Citation Analysis]
9 Eghbali H, Nava MM, Mohebbi-Kalhori D, Raimondi MT. Hollow fiber bioreactor technology for tissue engineering applications. Int J Artif Organs 2016;39:1-15. [PMID: 26916757 DOI: 10.5301/ijao.5000466] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 4.2] [Reference Citation Analysis]
10 Modi A, Verma SK, Bellare J. Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes. Journal of Colloid and Interface Science 2017;504:86-100. [DOI: 10.1016/j.jcis.2017.05.035] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 7.5] [Reference Citation Analysis]
11 Yin J, Wang Z, Chai W, Dai G, Suo H, Zhang N, Wen X, Huang Y. Fabrication of Inner Grooved Hollow Fiber Membranes Using Microstructured Spinneret for Nerve Regeneration. Journal of Manufacturing Science and Engineering 2017;139:111007. [DOI: 10.1115/1.4037430] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
12 Huang J, Harris JF, Nath P, Iyer R. Hollow fiber integrated microfluidic platforms for in vitro Co-culture of multiple cell types. Biomed Microdevices 2016;18. [DOI: 10.1007/s10544-016-0102-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
13 Guan L, Nilghaz A, Su B, Jiang L, Cheng W, Shen W. Stretchable‐Fiber‐Confined Wetting Conductive Liquids as Wearable Human Health Monitors. Adv Funct Mater 2016;26:4511-7. [DOI: 10.1002/adfm.201600443] [Cited by in Crossref: 58] [Cited by in F6Publishing: 39] [Article Influence: 11.6] [Reference Citation Analysis]
14 Modi A, Verma SK, Bellare J. Hydrophilic ZIF-8 decorated GO nanosheets improve biocompatibility and separation performance of polyethersulfone hollow fiber membranes: A potential membrane material for bioartificial liver application. Materials Science and Engineering: C 2018;91:524-40. [DOI: 10.1016/j.msec.2018.05.051] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 7.3] [Reference Citation Analysis]
15 Wu J, Hu C, Tang Z, Yu Q, Liu X, Chen H. Tissue-engineered Vascular Grafts: Balance of the Four Major Requirements. Colloid and Interface Science Communications 2018;23:34-44. [DOI: 10.1016/j.colcom.2018.01.005] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 8.7] [Reference Citation Analysis]
16 Diban N, Sánchez-gonzález S, Lázaro-díez M, Ramos-vivas J, Urtiaga A. Facile fabrication of poly(ε-caprolactone)/graphene oxide membranes for bioreactors in tissue engineering. Journal of Membrane Science 2017;540:219-28. [DOI: 10.1016/j.memsci.2017.06.052] [Cited by in Crossref: 16] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]