BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Esmaeili E, Khalili M, Sohi AN, Hosseinzadeh S, Taheri B, Soleimani M. Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis. J Cell Physiol 2019;234:12615-24. [DOI: 10.1002/jcp.27849] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Rastogi V, Yadav P, Porwal M, Sur S, Verma A. Dendrimer as nanocarrier for drug delivery and drug targeting therapeutics: a fundamental to advanced systematic review. International Journal of Polymeric Materials and Polymeric Biomaterials 2022. [DOI: 10.1080/00914037.2022.2158334] [Reference Citation Analysis]
2 Shao X, Yan C, Wang C, Wang C, Cao Y, Zhou Y, Guan P, Hu X, Zhu W, Ding S. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation. Nanoscale Adv 2022;5:46-80. [PMID: 36605800 DOI: 10.1039/d2na00625a] [Reference Citation Analysis]
3 Mosleh-shirazi S, Kasaee SR, Dehghani F, Kamyab H, Kirpichnikova I, Chelliapan S, Firuzyar T, Akhtari M, Amani AM. Investigation through the anticancer properties of green synthesized spinel ferrite nanoparticles in present and absent of laser photothermal effect. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.11.329] [Reference Citation Analysis]
4 Shivanna AT, Dash BS, Chen J. Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies. Micromachines 2022;13:1279. [DOI: 10.3390/mi13081279] [Reference Citation Analysis]
5 Krishnan RR, Chandran SR, Johnson E, Hariharan PK. Biomedical Applications of Dendrimer Functionalized Magnetic Nanoparticles. ChemistrySelect 2022;7. [DOI: 10.1002/slct.202201401] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Khalili M, Khalili A, Bokov DO, Golmirzaei M, Oleneva MS, Naghiaei N, Radmehr M, Esmaeili E. Preparation and characterization of bi-layered polycaprolactone/polyurethane nanofibrous scaffold loaded with titanium oxide and curcumin for wound dressing applications. Appl Phys A 2022;128. [DOI: 10.1007/s00339-022-05646-2] [Reference Citation Analysis]
7 Yadav A, Rao C, Kaushik K, Anjum F, Sharma S, Nandi CK. Superparamagnetic Iron Oxide Nanoparticles with Large Magnetic Saturation and High Particle Photon Counts for Super-Resolution Imaging of Lysosomes. ACS Appl Nano Mater 2022;5:4018-27. [DOI: 10.1021/acsanm.2c00011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Renu, Kaur J, Singhal S, Kaushik A. Recent Progress in Applications of Magnetic Nanoparticles in Medicine: A Review. Biomedical Translational Research 2022. [DOI: 10.1007/978-981-16-9232-1_24] [Reference Citation Analysis]
9 Staji M, Sadeghzadeh N, Zamanlui S, Azarani M, Golchin A, Soleimani M, Ardeshirylajimi A, Khojasteh A, Hosseinzadeh S. Evaluation of dermal growth of keratinocytes derived from foreskin in co-culture condition with mesenchymal stem cells on polyurethane/gelatin/amnion scaffold. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2021.2018316] [Reference Citation Analysis]
10 Alromi DA, Madani SY, Seifalian A. Emerging Application of Magnetic Nanoparticles for Diagnosis and Treatment of Cancer. Polymers (Basel) 2021;13:4146. [PMID: 34883649 DOI: 10.3390/polym13234146] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
11 Darvishi V, Navidbakhsh M, Amanpour S. Heat and mass transfer in the hyperthermia cancer treatment by magnetic nanoparticles. Heat Mass Transf 2021;:1-11. [PMID: 34848928 DOI: 10.1007/s00231-021-03161-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 Khalili M, Keshvari H, Imani R, Sohi AN, Esmaeili E, Tajabadi M. Study of osteogenic potential of electrospun PCL incorporated by dendrimerized superparamagnetic nanoparticles as a bone tissue engineering scaffold. Polymers for Advanced Techs 2022;33:782-94. [DOI: 10.1002/pat.5555] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
13 Hatamie S, Balasi ZM, Ahadian MM, Mortezazadeh T, Shams F, Hosseinzadeh S. Hyperthermia of breast cancer tumor using graphene oxide-cobalt ferrite magnetic nanoparticles in mice. Journal of Drug Delivery Science and Technology 2021;65:102680. [DOI: 10.1016/j.jddst.2021.102680] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
14 Hatamie S, Shih PJ, Chen BW, Shih HJ, Wang IJ, Young TH, Yao DJ. Effects of Electromagnets on Bovine Corneal Endothelial Cells Treated with Dendrimer Functionalized Magnetic Nanoparticles. Polymers (Basel) 2021;13:3306. [PMID: 34641122 DOI: 10.3390/polym13193306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Day NB, Wixson WC, Shields CW 4th. Magnetic systems for cancer immunotherapy. Acta Pharm Sin B 2021;11:2172-96. [PMID: 34522583 DOI: 10.1016/j.apsb.2021.03.023] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
16 Ren M, Wang Y, Lei B, Yang X, Hou Y, Meng W, Zhao D. Magnetite nanoparticles anchored on graphene oxide loaded with doxorubicin hydrochloride for magnetic hyperthermia therapy. Ceramics International 2021;47:20686-92. [DOI: 10.1016/j.ceramint.2021.04.080] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
17 Sneha KR, Sreeja S, Sailaja GS. Radiopacity endowed magnetic nanocomposite with hyperthermia andin vitromineralization potential: a combinatorial therapeutic system for osteosarcoma. Biomed Mater 2021;16. [PMID: 34061045 DOI: 10.1088/1748-605X/ac01af] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
18 Lin Y, Zhang K, Zhang R, She Z, Tan R, Fan Y, Li X. Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives. J Mater Chem B 2020;8:5973-91. [PMID: 32597454 DOI: 10.1039/d0tb00552e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
19 Nikzamir M, Hanifehpour Y, Akbarzadeh A, Panahi Y. Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review. J Inorg Organomet Polym 2021;31:2246-61. [DOI: 10.1007/s10904-021-01925-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
20 Anik MI, Hossain MK, Hossain I, Ahmed I, Doha RM. Biomedical applications of magnetic nanoparticles. Magnetic Nanoparticle-Based Hybrid Materials 2021. [DOI: 10.1016/b978-0-12-823688-8.00002-8] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
21 Masrour R, Jabar A, Sahdane T. Magnetic properties and applications of dendrimer systems. Dendrimer-Based Nanotherapeutics 2021. [DOI: 10.1016/b978-0-12-821250-9.00001-9] [Reference Citation Analysis]
22 Li B, Zhong M, Ji F. Laser Induced Aggregation of Light Absorbing Particles by Marangoni Convection. Applied Sciences 2020;10:7795. [DOI: 10.3390/app10217795] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
23 Wang M, Tao X, Peng L, Ye C. Imaging of Magnetic Nanoparticles Using Small TMR Sensor With an Excitation-Compensation Scheme. IEEE Sensors J 2020;20:11082-9. [DOI: 10.1109/jsen.2020.2996741] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
24 Li H, Sun J, Zhu H, Wu H, Zhang H, Gu Z, Luo K. Recent advances in development of dendritic polymer-based nanomedicines for cancer diagnosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1670. [PMID: 32949116 DOI: 10.1002/wnan.1670] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 8.7] [Reference Citation Analysis]
25 Ribeiro TP, Monteiro FJ, Laranjeira MS. Duality of iron (III) doped nano hydroxyapatite in triple negative breast cancer monitoring and as a drug-free therapeutic agent. Ceramics International 2020;46:16590-7. [DOI: 10.1016/j.ceramint.2020.03.231] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
26 Bernsen MR, van Straten M, Kotek G, Warnert EAH, Haeck JC, Ruggiero A, Wielopolski PA, Krestin GP. Computed Tomography and Magnetic Resonance Imaging. Recent Results Cancer Res 2020;216:31-110. [PMID: 32594384 DOI: 10.1007/978-3-030-42618-7_2] [Reference Citation Analysis]
27 Shahsavari Alavijeh M, Maghsoudpour A, Khayat M, Rad I, Hatamie S. Distribution of “molybdenum disulfide/cobalt ferrite” nanocomposite in animal model of breast cancer, following injection via differential infusion flow rates. J Pharm Investig 2020;50:583-92. [DOI: 10.1007/s40005-020-00479-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
28 Zhang W, Zhao X, Yuan Y, Miao F, Li W, Ji S, Huang X, Chen X, Jiang T, Weitz DA, Song Y. Microfluidic Synthesis of Multimode Au@CoFeB-Rg3 Nanomedicines and Their Cytotoxicity and Anti-Tumor Effects. Chem Mater 2020;32:5044-56. [DOI: 10.1021/acs.chemmater.0c00797] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
29 Trosheva KS, Sorokina SA, Efimova AA. Interaction Between Anionic Liposomes and Cationic Pyridylphenylene Dendrimers. Moscow Univ Chem Bull 2020;75:101-105. [DOI: 10.3103/s0027131420020169] [Reference Citation Analysis]