BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yanguas-casás N, Barreda-manso MA, Nieto-sampedro M, Romero-ramírez L. TUDCA: An Agonist of the Bile Acid Receptor GPBAR1/TGR5 With Anti-Inflammatory Effects in Microglial Cells: ANTI-INFLAMMATORY EFFECT OF TUDCA IN MICROGLIA. J Cell Physiol 2017;232:2231-45. [DOI: 10.1002/jcp.25742] [Cited by in Crossref: 58] [Cited by in F6Publishing: 54] [Article Influence: 11.6] [Reference Citation Analysis]
Number Citing Articles
1 Yuan Y, Wu X, Hong Y, Zhang X, Wang Z, Yan H. Salidroside ameliorates liver metabonomics in relation to modified gut-liver FXR signaling in furan-induced mice. Food and Chemical Toxicology 2020;140:111311. [DOI: 10.1016/j.fct.2020.111311] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
2 Zangerolamo L, Solon C, Soares GM, Engel DF, Velloso LA, Boschero AC, Carneiro EM, Barbosa HCL. Energy homeostasis deregulation is attenuated by TUDCA treatment in streptozotocin-induced Alzheimer's disease mice model. Sci Rep 2021;11:18114. [PMID: 34518585 DOI: 10.1038/s41598-021-97624-6] [Reference Citation Analysis]
3 Fettig NM, Osborne LC. Direct and indirect effects of microbiota-derived metabolites on neuroinflammation in multiple sclerosis. Microbes Infect 2021;23:104814. [PMID: 33775860 DOI: 10.1016/j.micinf.2021.104814] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Lin S, Yang X, Yuan P, Yang J, Wang P, Zhong H, Zhang X, Che L, Feng B, Li J, Zhuo Y, Lin Y, Xu S, Wu, Burrin DG, Fang Z. Undernutrition Shapes the Gut Microbiota and Bile Acid Profile in Association with Altered Gut-Liver FXR Signaling in Weaning Pigs. J Agric Food Chem 2019;67:3691-701. [PMID: 30864445 DOI: 10.1021/acs.jafc.9b01332] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
5 Hou Y, Luan J, Huang T, Deng T, Li X, Xiao Z, Zhan J, Luo D, Hou Y, Xu L, Lin D. Tauroursodeoxycholic acid alleviates secondary injury in spinal cord injury mice by reducing oxidative stress, apoptosis, and inflammatory response. J Neuroinflammation 2021;18:216. [PMID: 34544428 DOI: 10.1186/s12974-021-02248-2] [Reference Citation Analysis]
6 Lu X, Yang RR, Zhang JL, Wang P, Gong Y, Hu WF, Wu Y, Gao MH, Huang C. Tauroursodeoxycholic acid produces antidepressant-like effects in a chronic unpredictable stress model of depression via attenuation of neuroinflammation, oxido-nitrosative stress, and endoplasmic reticulum stress. Fundam Clin Pharmacol 2018;32:363-77. [PMID: 29578616 DOI: 10.1111/fcp.12367] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
7 Freedman SN, Shahi SK, Mangalam AK. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics 2018;15:109-25. [PMID: 29204955 DOI: 10.1007/s13311-017-0588-x] [Cited by in Crossref: 62] [Cited by in F6Publishing: 58] [Article Influence: 20.7] [Reference Citation Analysis]
8 Perino A, Velázquez-Villegas LA, Bresciani N, Sun Y, Huang Q, Fénelon VS, Castellanos-Jankiewicz A, Zizzari P, Bruschetta G, Jin S, Baleisyte A, Gioiello A, Pellicciari R, Ivanisevic J, Schneider BL, Diano S, Cota D, Schoonjans K. Central anorexigenic actions of bile acids are mediated by TGR5. Nat Metab 2021;3:595-603. [PMID: 34031591 DOI: 10.1038/s42255-021-00398-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Wang J, Yang C, Zhao Q, Zhu Z, Li Y, Yang P. Microglia activation induced by serum of SLE patients. J Neuroimmunol 2017;310:135-42. [PMID: 28778438 DOI: 10.1016/j.jneuroim.2017.07.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
10 Tao ZS, Li TL, Wu XJ, Yang M. Local administration with tauroursodeoxycholic acid could improve osseointegration of hydroxyapatite-coated titanium implants in ovariectomized rats. J Biomater Appl 2021;36:552-61. [PMID: 34162236 DOI: 10.1177/08853282211027678] [Reference Citation Analysis]
11 Bowers SJ, Vargas F, González A, He S, Jiang P, Dorrestein PC, Knight R, Wright KP Jr, Lowry CA, Fleshner M, Vitaterna MH, Turek FW. Repeated sleep disruption in mice leads to persistent shifts in the fecal microbiome and metabolome. PLoS One 2020;15:e0229001. [PMID: 32078624 DOI: 10.1371/journal.pone.0229001] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
12 Qian XH, Song XX, Liu XL, Chen SD, Tang HD. Inflammatory pathways in Alzheimer's disease mediated by gut microbiota. Ageing Res Rev 2021;68:101317. [PMID: 33711509 DOI: 10.1016/j.arr.2021.101317] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Kim SJ, Ko WK, Jo MJ, Arai Y, Choi H, Kumar H, Han IB, Sohn S. Anti-inflammatory effect of Tauroursodeoxycholic acid in RAW 264.7 macrophages, Bone marrow-derived macrophages, BV2 microglial cells, and spinal cord injury. Sci Rep 2018;8:3176. [PMID: 29453346 DOI: 10.1038/s41598-018-21621-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
14 Zuo G, Zhang T, Huang L, Araujo C, Peng J, Travis Z, Okada T, Ocak U, Zhang G, Tang J, Lu X, Zhang JH. Activation of TGR5 with INT-777 attenuates oxidative stress and neuronal apoptosis via cAMP/PKCε/ALDH2 pathway after subarachnoid hemorrhage in rats. Free Radic Biol Med 2019;143:441-53. [PMID: 31493504 DOI: 10.1016/j.freeradbiomed.2019.09.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 7.3] [Reference Citation Analysis]
15 Carey L, Walker D, Jones M, Ionescu C, Wagle S, Kovacevic B, Brown D, Mikov M, Mooranian A, Al-Salami H. Bile acid permeation enhancement for inner ear cochlear drug pharmacological uptake: bio-nanotechnologies in chemotherapy-induced hearing loss. Ther Deliv 2021;12:807-19. [PMID: 34761700 DOI: 10.4155/tde-2021-0048] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Herman-Edelstein M, Weinstein T, Levi M. Bile acid receptors and the kidney. Curr Opin Nephrol Hypertens 2018;27:56-62. [PMID: 29045336 DOI: 10.1097/MNH.0000000000000374] [Cited by in Crossref: 18] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
17 Liang H, Matei N, McBride DW, Xu Y, Tang J, Luo B, Zhang JH. Activation of TGR5 protects blood brain barrier via the BRCA1/Sirt1 pathway after middle cerebral artery occlusion in rats. J Biomed Sci 2020;27:61. [PMID: 32381096 DOI: 10.1186/s12929-020-00656-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
18 Wu H, Yu N, Wang X, Yang Y, Liang H. Tauroursodeoxycholic acid attenuates neuronal apoptosis via the TGR5/ SIRT3 pathway after subarachnoid hemorrhage in rats. Biol Res 2020;53:56. [PMID: 33261652 DOI: 10.1186/s40659-020-00323-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Shi H, Zhang B, Abo-Hamzy T, Nelson JW, Ambati CSR, Petrosino JF, Bryan RM Jr, Durgan DJ. Restructuring the Gut Microbiota by Intermittent Fasting Lowers Blood Pressure. Circ Res 2021;128:1240-54. [PMID: 33596669 DOI: 10.1161/CIRCRESAHA.120.318155] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Zangerolamo L, Vettorazzi JF, Rosa LRO, Carneiro EM, Barbosa HCL. The bile acid TUDCA and neurodegenerative disorders: An overview. Life Sci 2021;272:119252. [PMID: 33636170 DOI: 10.1016/j.lfs.2021.119252] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
21 Chi L, Tu P, Ru H, Lu K. Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes 2021;13:1921912. [PMID: 34313531 DOI: 10.1080/19490976.2021.1921912] [Reference Citation Analysis]
22 Needham BD, Kaddurah-daouk R, Mazmanian SK. Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci 2020;21:717-31. [DOI: 10.1038/s41583-020-00381-0] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 12.0] [Reference Citation Analysis]
23 Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile Acids Activated Receptors Regulate Innate Immunity. Front Immunol 2018;9:1853. [PMID: 30150987 DOI: 10.3389/fimmu.2018.01853] [Cited by in Crossref: 123] [Cited by in F6Publishing: 118] [Article Influence: 30.8] [Reference Citation Analysis]
24 Yan N, Yan T, Xia Y, Hao H, Wang G, Gonzalez FJ. The pathophysiological function of non-gastrointestinal farnesoid X receptor. Pharmacol Ther 2021;226:107867. [PMID: 33895191 DOI: 10.1016/j.pharmthera.2021.107867] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Caspani G, Swann J. Small talk: microbial metabolites involved in the signaling from microbiota to brain. Curr Opin Pharmacol 2019;48:99-106. [PMID: 31525562 DOI: 10.1016/j.coph.2019.08.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
26 Huang F, Pariante CM, Borsini A. From dried bear bile to molecular investigation: A systematic review of the effect of bile acids on cell apoptosis, oxidative stress and inflammation in the brain, across pre-clinical models of neurological, neurodegenerative and neuropsychiatric disorders. Brain Behav Immun 2021;99:132-46. [PMID: 34601012 DOI: 10.1016/j.bbi.2021.09.021] [Reference Citation Analysis]
27 Hu J, Wang C, Huang X, Yi S, Pan S, Zhang Y, Yuan G, Cao Q, Ye X, Li H. Gut microbiota-mediated secondary bile acids regulate dendritic cells to attenuate autoimmune uveitis through TGR5 signaling. Cell Rep 2021;36:109726. [PMID: 34551302 DOI: 10.1016/j.celrep.2021.109726] [Reference Citation Analysis]
28 Mulak A. Bile Acids as Key Modulators of the Brain-Gut-Microbiota Axis in Alzheimer's Disease. J Alzheimers Dis 2021;84:461-77. [PMID: 34569953 DOI: 10.3233/JAD-210608] [Reference Citation Analysis]
29 Yanguas-casás N, Ojalvo-sanz AC, Martínez-vázquez A, Goneau M, Gilbert M, Nieto-sampedro M, Romero-ramírez L. Neurostatin and other O-acetylated gangliosides show anti-neuroinflammatory activity involving the NFκB pathway. Toxicology and Applied Pharmacology 2019;377:114627. [DOI: 10.1016/j.taap.2019.114627] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
30 Winston JA, Rivera A, Cai J, Patterson AD, Theriot CM. Secondary bile acid ursodeoxycholic acid alters weight, the gut microbiota, and the bile acid pool in conventional mice. PLoS One 2021;16:e0246161. [PMID: 33600468 DOI: 10.1371/journal.pone.0246161] [Reference Citation Analysis]
31 Chen MJ, Liu C, Wan Y, Yang L, Jiang S, Qian DW, Duan JA. Enterohepatic circulation of bile acids and their emerging roles on glucolipid metabolism. Steroids 2021;165:108757. [PMID: 33161055 DOI: 10.1016/j.steroids.2020.108757] [Reference Citation Analysis]
32 Thounaojam MC, Jadeja RN, Rajpurohit S, Gutsaeva DR, Stansfield BK, Martin PM, Bartoli M. Ursodeoxycholic Acid Halts Pathological Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. J Clin Med 2020;9:E1921. [PMID: 32575487 DOI: 10.3390/jcm9061921] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Li L, Liu C, Mao W, Tumen B, Li P. Taurochenodeoxycholic Acid Inhibited AP-1 Activation via Stimulating Glucocorticoid Receptor. Molecules 2019;24:E4513. [PMID: 31835494 DOI: 10.3390/molecules24244513] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
34 Liang H, Matei N, McBride DW, Xu Y, Zhou Z, Tang J, Luo B, Zhang JH. TGR5 activation attenuates neuroinflammation via Pellino3 inhibition of caspase-8/NLRP3 after middle cerebral artery occlusion in rats. J Neuroinflammation 2021;18:40. [PMID: 33531049 DOI: 10.1186/s12974-021-02087-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Mendes MO, Rosa AI, Carvalho AN, Nunes MJ, Dionísio P, Rodrigues E, Costa D, Duarte-Silva S, Maciel P, Rodrigues CMP, Gama MJ, Castro-Caldas M. Neurotoxic effects of MPTP on mouse cerebral cortex: Modulation of neuroinflammation as a neuroprotective strategy. Mol Cell Neurosci 2019;96:1-9. [PMID: 30771505 DOI: 10.1016/j.mcn.2019.01.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
36 Wu X, Lv YG, Du YF, Hu M, Reed MN, Long Y, Suppiramaniam V, Hong H, Tang SS. Inhibitory effect of INT-777 on lipopolysaccharide-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice. Prog Neuropsychopharmacol Biol Psychiatry 2019;88:360-74. [PMID: 30144494 DOI: 10.1016/j.pnpbp.2018.08.016] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 6.8] [Reference Citation Analysis]
37 Wu S, Romero-Ramírez L, Mey J. Taurolithocholic acid but not tauroursodeoxycholic acid rescues phagocytosis activity of bone marrow-derived macrophages under inflammatory stress. J Cell Physiol 2021. [PMID: 34705285 DOI: 10.1002/jcp.30619] [Reference Citation Analysis]
38 Leyrolle Q, Layé S, Nadjar A. Direct and indirect effects of lipids on microglia function. Neurosci Lett 2019;708:134348. [PMID: 31238131 DOI: 10.1016/j.neulet.2019.134348] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
39 Monteiro-Cardoso VF, Corlianò M, Singaraja RR. Bile Acids: A Communication Channel in the Gut-Brain Axis. Neuromolecular Med 2021;23:99-117. [PMID: 33085065 DOI: 10.1007/s12017-020-08625-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
40 Wu X, Liu C, Chen L, Du YF, Hu M, Reed MN, Long Y, Suppiramaniam V, Hong H, Tang SS. Protective effects of tauroursodeoxycholic acid on lipopolysaccharide-induced cognitive impairment and neurotoxicity in mice. Int Immunopharmacol 2019;72:166-75. [PMID: 30986644 DOI: 10.1016/j.intimp.2019.03.065] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
41 Wang F, So KF, Xiao J, Wang H. Organ-organ communication: The liver's perspective. Theranostics 2021;11:3317-30. [PMID: 33537089 DOI: 10.7150/thno.55795] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
42 Hu X, Yan J, Huang L, Araujo C, Peng J, Gao L, Liu S, Tang J, Zuo G, Zhang JH. INT-777 attenuates NLRP3-ASC inflammasome-mediated neuroinflammation via TGR5/cAMP/PKA signaling pathway after subarachnoid hemorrhage in rats. Brain Behav Immun 2021;91:587-600. [PMID: 32961266 DOI: 10.1016/j.bbi.2020.09.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
43 Wu X, Lv Y, Du Y, Chen F, Reed MN, Hu M, Suppiramaniam V, Tang S, Hong H. Neuroprotective effects of INT-777 against Aβ1–42-induced cognitive impairment, neuroinflammation, apoptosis, and synaptic dysfunction in mice. Brain, Behavior, and Immunity 2018;73:533-45. [DOI: 10.1016/j.bbi.2018.06.018] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 6.5] [Reference Citation Analysis]
44 Jena PK, Sheng L, Di Lucente J, Jin LW, Maezawa I, Wan YY. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB J. 2018;32:2866-2877. [PMID: 29401580 DOI: 10.1096/fj.201700984rr] [Cited by in Crossref: 38] [Cited by in F6Publishing: 25] [Article Influence: 9.5] [Reference Citation Analysis]
45 Wang H, Tan YZ, Mu RH, Tang SS, Liu X, Xing SY, Long Y, Yuan DH, Hong H. Takeda G Protein-Coupled Receptor 5 Modulates Depression-like Behaviors via Hippocampal CA3 Pyramidal Neurons Afferent to Dorsolateral Septum. Biol Psychiatry 2021;89:1084-95. [PMID: 33536132 DOI: 10.1016/j.biopsych.2020.11.018] [Reference Citation Analysis]
46 Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System. Front Neurosci. 2017;11:617. [PMID: 29163019 DOI: 10.3389/fnins.2017.00617] [Cited by in Crossref: 83] [Cited by in F6Publishing: 73] [Article Influence: 16.6] [Reference Citation Analysis]
47 Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microb Cell 2019;6:454-81. [PMID: 31646148 DOI: 10.15698/mic2019.10.693] [Cited by in Crossref: 48] [Cited by in F6Publishing: 39] [Article Influence: 16.0] [Reference Citation Analysis]
48 Zhu Y, Chen Z, You W, Wang Y, Tu M, Zheng P, Wen L, Yang X. A Retrospective Clinical Analysis of the Serum Bile Acid Alteration Caused by Traumatic Brain Injury. Front Neurol 2021;12:624378. [PMID: 34512494 DOI: 10.3389/fneur.2021.624378] [Reference Citation Analysis]
49 Zhang X, Shahani U, Reilly J, Shu X. Disease mechanisms and neuroprotection by tauroursodeoxycholic acid in Rpgr knockout mice. J Cell Physiol 2019;234:18801-12. [PMID: 30924157 DOI: 10.1002/jcp.28519] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
50 Rosa AI, Duarte-silva S, Silva-fernandes A, Nunes MJ, Carvalho AN, Rodrigues E, Gama MJ, Rodrigues CMP, Maciel P, Castro-caldas M. Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson’s Disease. Mol Neurobiol 2018;55:9139-55. [DOI: 10.1007/s12035-018-1062-4] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
51 Jena PK, Sheng L, Nguyen M, Di Lucente J, Hu Y, Li Y, Maezawa I, Jin LW, Wan YY. Dysregulated bile acid receptor-mediated signaling and IL-17A induction are implicated in diet-associated hepatic health and cognitive function. Biomark Res 2020;8:59. [PMID: 33292701 DOI: 10.1186/s40364-020-00239-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Groenendyk J, Agellon LB, Michalak M. Calcium signaling and endoplasmic reticulum stress. Int Rev Cell Mol Biol 2021;363:1-20. [PMID: 34392927 DOI: 10.1016/bs.ircmb.2021.03.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Liu JY, Chen HY, Zhang GX. Role and significance of bile acid membrane receptor GPBAR1 in pathogenesis of obstructive jaundice. Shijie Huaren Xiaohua Zazhi 2020; 28(21): 1053-1058 [DOI: 10.11569/wcjd.v28.i21.1053] [Reference Citation Analysis]
54 Camara-Lemarroy CR, Metz LM, Yong VW. Focus on the gut-brain axis: Multiple sclerosis, the intestinal barrier and the microbiome. World J Gastroenterol 2018; 24(37): 4217-4223 [PMID: 30310254 DOI: 10.3748/wjg.v24.i37.4217] [Cited by in CrossRef: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
55 Shah V, Mittal R, Shahal D, Sinha P, Bulut E, Mittal J, Eshraghi AA. Evaluating the Efficacy of Taurodeoxycholic Acid in Providing Otoprotection Using an in vitro Model of Electrode Insertion Trauma. Front Mol Neurosci 2020;13:113. [PMID: 32760249 DOI: 10.3389/fnmol.2020.00113] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
56 Huang S, Ma S, Ning M, Yang W, Ye Y, Zhang L, Shen J, Leng Y. TGR5 agonist ameliorates insulin resistance in the skeletal muscles and improves glucose homeostasis in diabetic mice. Metabolism 2019;99:45-56. [PMID: 31295453 DOI: 10.1016/j.metabol.2019.07.003] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 4.3] [Reference Citation Analysis]
57 Rosa LRO, Vettorazzi JF, Zangerolamo L, Carneiro EM, Barbosa HCL. TUDCA receptors and their role on pancreatic beta cells. Prog Biophys Mol Biol 2021:S0079-6107(21)00106-1. [PMID: 34547326 DOI: 10.1016/j.pbiomolbio.2021.09.003] [Reference Citation Analysis]
58 Bhargava P, Smith MD, Mische L, Harrington E, Fitzgerald KC, Martin K, Kim S, Reyes AA, Gonzalez-Cardona J, Volsko C, Tripathi A, Singh S, Varanasi K, Lord HN, Meyers K, Taylor M, Gharagozloo M, Sotirchos ES, Nourbakhsh B, Dutta R, Mowry EM, Waubant E, Calabresi PA. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J Clin Invest 2020;130:3467-82. [PMID: 32182223 DOI: 10.1172/JCI129401] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
59 Cuevas E, Burks S, Raymick J, Robinson B, Gómez-Crisóstomo NP, Escudero-Lourdes C, Lopez AGG, Chigurupati S, Hanig J, Ferguson SA, Sarkar S. Tauroursodeoxycholic acid (TUDCA) is neuroprotective in a chronic mouse model of Parkinson's disease. Nutr Neurosci 2020;:1-18. [PMID: 33345721 DOI: 10.1080/1028415X.2020.1859729] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]