BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dreifke MB, Ebraheim NA, Jayasuriya AC. Investigation of potential injectable polymeric biomaterials for bone regeneration. J Biomed Mater Res A 2013;101:2436-47. [PMID: 23401336 DOI: 10.1002/jbm.a.34521] [Cited by in Crossref: 70] [Cited by in F6Publishing: 57] [Article Influence: 7.8] [Reference Citation Analysis]
Number Citing Articles
1 Akyol E, Tatliyuz M, Demir Duman F, Guven MN, Acar HY, Avci D. Phosphonate-functionalized poly(β-amino ester) macromers as potential biomaterials: Phosphonate-functionalized poly(β-amino ester) macromers as potential biomaterials. J Biomed Mater Res 2018;106:1390-9. [DOI: 10.1002/jbm.a.36339] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
2 Kocak FZ, Talari ACS, Yar M, Rehman IU. In-Situ Forming pH and Thermosensitive Injectable Hydrogels to Stimulate Angiogenesis: Potential Candidates for Fast Bone Regeneration Applications. Int J Mol Sci 2020;21:E1633. [PMID: 32120998 DOI: 10.3390/ijms21051633] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
3 Uswatta SP, Okeke IU, Jayasuriya AC. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Mater Sci Eng C Mater Biol Appl 2016;69:505-12. [PMID: 27612741 DOI: 10.1016/j.msec.2016.06.089] [Cited by in Crossref: 47] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
4 Song WY, Liu GM, Li J, Luo YG. Bone morphogenetic protein-2 sustained delivery by hydrogels with microspheres repairs rabbit mandibular defects. Tissue Eng Regen Med 2016;13:750-61. [PMID: 30603456 DOI: 10.1007/s13770-016-9123-0] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
5 Battafarano G, Rossi M, De Martino V, Marampon F, Borro L, Secinaro A, Del Fattore A. Strategies for Bone Regeneration: From Graft to Tissue Engineering. Int J Mol Sci 2021;22:1128. [PMID: 33498786 DOI: 10.3390/ijms22031128] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
6 Zhang J, Shi H, Zhang N, Hu L, Jing W, Pan J. Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF-β1/Smad pathway for repair of bone defect. Cell Prolif 2020;53:e12907. [PMID: 32951298 DOI: 10.1111/cpr.12907] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
7 Leonida MD, Kumar I. Wound Healing and Skin Regeneration. Bionanomaterials for Skin Regeneration. Cham: Springer International Publishing; 2016. pp. 17-25. [DOI: 10.1007/978-3-319-39168-7_3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
8 D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opinion on Drug Delivery 2016;13:1257-75. [DOI: 10.1080/17425247.2016.1182485] [Cited by in Crossref: 274] [Cited by in F6Publishing: 207] [Article Influence: 45.7] [Reference Citation Analysis]
9 Ribeiro CA, Martins MVS, Bressiani AH, Bressiani JC, Leyva ME, de Queiroz AAA. Electrochemical preparation and characterization of PNIPAM-HAp scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2017;81:156-66. [PMID: 28887960 DOI: 10.1016/j.msec.2017.07.048] [Cited by in Crossref: 32] [Cited by in F6Publishing: 20] [Article Influence: 6.4] [Reference Citation Analysis]
10 Gaihre B, Lecka-Czernik B, Jayasuriya AC. Injectable nanosilica-chitosan microparticles for bone regeneration applications. J Biomater Appl 2018;32:813-25. [PMID: 29160129 DOI: 10.1177/0885328217741523] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
11 Ho MH, Chang HC, Chang YC, Claudia J, Lin TC, Chang PC. PDGF-metronidazole-encapsulated nanofibrous functional layers on collagen membrane promote alveolar ridge regeneration. Int J Nanomedicine 2017;12:5525-35. [PMID: 28831251 DOI: 10.2147/IJN.S137342] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
12 Subramanian G, Bialorucki C, Yildirim-Ayan E. Nanofibrous yet injectable polycaprolactone-collagen bone tissue scaffold with osteoprogenitor cells and controlled release of bone morphogenetic protein-2. Mater Sci Eng C Mater Biol Appl 2015;51:16-27. [PMID: 25842103 DOI: 10.1016/j.msec.2015.02.030] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 4.3] [Reference Citation Analysis]
13 Tian Y, Wu D, Wu D, Cui Y, Ren G, Wang Y, Wang J, Peng C. Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Front Bioeng Biotechnol 2022;10:899760. [DOI: 10.3389/fbioe.2022.899760] [Reference Citation Analysis]
14 Gaihre B, Jayasuriya AC. Fabrication and characterization of carboxymethyl cellulose novel microparticles for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2016;69:733-43. [PMID: 27612767 DOI: 10.1016/j.msec.2016.07.060] [Cited by in Crossref: 43] [Cited by in F6Publishing: 28] [Article Influence: 7.2] [Reference Citation Analysis]
15 He XT, Li X, Xia Y, Yin Y, Wu RX, Sun HH, Chen FM. Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: Experimental studies in vitro and in rats. Acta Biomater 2019;88:162-80. [PMID: 30735811 DOI: 10.1016/j.actbio.2019.02.004] [Cited by in Crossref: 49] [Cited by in F6Publishing: 41] [Article Influence: 16.3] [Reference Citation Analysis]
16 Gaihre B, Uswatta S, Jayasuriya AC. Nano-scale characterization of nano-hydroxyapatite incorporated chitosan particles for bone repair. Colloids Surf B Biointerfaces 2018;165:158-64. [PMID: 29477936 DOI: 10.1016/j.colsurfb.2018.02.034] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
17 Yu C, Wang X, Chen C, Zhang F. Preparation of Polystyrene Microspheres Using Rosin–Acrylic Acid Diester as a Cross-Linking Agent. Ind Eng Chem Res 2014;53:2244-50. [DOI: 10.1021/ie402868y] [Cited by in Crossref: 10] [Article Influence: 1.3] [Reference Citation Analysis]
18 Bonfrate V, Manno D, Serra A, Salvatore L, Sannino A, Buccolieri A, Serra T, Giancane G. Enhanced electrical conductivity of collagen films through long-range aligned iron oxide nanoparticles. J Colloid Interface Sci 2017;501:185-91. [PMID: 28456102 DOI: 10.1016/j.jcis.2017.04.067] [Cited by in Crossref: 24] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
19 Jeznach O, Kołbuk D, Sajkiewicz P. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J Biomed Mater Res 2018;106:2762-76. [DOI: 10.1002/jbm.a.36449] [Cited by in Crossref: 34] [Cited by in F6Publishing: 27] [Article Influence: 8.5] [Reference Citation Analysis]
20 Garlet GP. Environment and bone regeneration: how biomaterials, host mediators and even bacterial products can boost bone cells towards better clinical outcomes. J Appl Oral Sci 2015;23:110-1. [PMID: 26018302 DOI: 10.1590/1678-77572015ed002] [Reference Citation Analysis]
21 Sohrabi M, Hesaraki S, Kazemzadeh A. The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors and in vitro responses: Hyaluronic acid versus sodium alginate: Influence Of Polymeric Component Of Bioactive Glass-Based Nanocomposite Paste. J Biomed Mater Res 2014;102:561-73. [DOI: 10.1002/jbm.b.33035] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 1.9] [Reference Citation Analysis]
22 Tommasi G, Perni S, Prokopovich P. An Injectable Hydrogel as Bone Graft Material with Added Antimicrobial Properties. Tissue Eng Part A 2016;22:862-72. [PMID: 27174392 DOI: 10.1089/ten.TEA.2016.0014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
23 Fang T, Yuan Z, Zhao Y, Li X, Zhai Y, Li J, Wang X, Rao N, Ge L, Cai Q. Synergistic effect of stem cells from human exfoliated deciduous teeth and rhBMP-2 delivered by injectable nanofibrous microspheres with different surface modifications on vascularized bone regeneration. Chemical Engineering Journal 2019;370:573-86. [DOI: 10.1016/j.cej.2019.03.151] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
24 Goh CY, Lim SS, Tshai KY, El Azab AWZZ, Loh H. Fabrication and in vitro biocompatibility of sodium tripolyphosphate-crosslinked chitosan–hydroxyapatite scaffolds for bone regeneration. J Mater Sci 2019;54:3403-20. [DOI: 10.1007/s10853-018-3087-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
25 Solovieva EV, Fedotov AY, Mamonov VE, Komlev VS, Panteleyev AA. Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering. Biomed Mater 2018;13:025007. [DOI: 10.1088/1748-605x/aa9089] [Cited by in Crossref: 17] [Cited by in F6Publishing: 2] [Article Influence: 4.3] [Reference Citation Analysis]
26 Śmiga-matuszowicz M, Łukaszczyk J, Pilawka R, Basiaga M, Bilewicz M, Kusz D. Novel crosslinkable polyester resin–based composites as injectable bioactive scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials 2017;66:1-11. [DOI: 10.1080/00914037.2016.1180614] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
27 Hussain Z, Thu HE, Katas H, Bukhari SNA. Hyaluronic Acid-Based Biomaterials: A Versatile and Smart Approach to Tissue Regeneration and Treating Traumatic, Surgical, and Chronic Wounds. Polymer Reviews 2017;57:594-630. [DOI: 10.1080/15583724.2017.1315433] [Cited by in Crossref: 39] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
28 Oliveira MB, Kossover O, Mano JF, Seliktar D. Injectable PEGylated fibrinogen cell-laden microparticles made with a continuous solvent- and oil-free preparation method. Acta Biomater 2015;13:78-87. [PMID: 25462849 DOI: 10.1016/j.actbio.2014.11.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
29 Thorfve A, Bergstrand A, Ekström K, Lindahl A, Thomsen P, Larsson A, Tengvall P. Gene expression profiling of peri-implant healing of PLGA-Li+ implants suggests an activated Wnt signaling pathway in vivo. PLoS One 2014;9:e102597. [PMID: 25047349 DOI: 10.1371/journal.pone.0102597] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.4] [Reference Citation Analysis]
30 Shim KS, Kim SE, Yun YP, Choi S, Kim HJ, Park K, Song HR. Biphasic Calcium Phosphate (BCP)-Immobilized Porous Poly (d,l-Lactic-co-Glycolic Acid) Microspheres Enhance Osteogenic Activities of Osteoblasts. Polymers (Basel) 2017;9:E297. [PMID: 30970975 DOI: 10.3390/polym9070297] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
31 Wu J, Li G, Ye T, Lu G, Li R, Deng L, Wang L, Cai M, Cui W. Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chemical Engineering Journal 2020;393:124715. [DOI: 10.1016/j.cej.2020.124715] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
32 Wei P, Yuan Z, Cai Q, Mao J, Yang X. Bioresorbable Microspheres with Surface-Loaded Nanosilver and Apatite as Dual-Functional Injectable Cell Carriers for Bone Regeneration. Macromol Rapid Commun 2018;39:1800062. [DOI: 10.1002/marc.201800062] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
33 Annamalai RT, Hong X, Schott NG, Tiruchinapally G, Levi B, Stegemann JP. Injectable osteogenic microtissues containing mesenchymal stromal cells conformally fill and repair critical-size defects. Biomaterials 2019;208:32-44. [PMID: 30991216 DOI: 10.1016/j.biomaterials.2019.04.001] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 6.7] [Reference Citation Analysis]
34 Kodavaty J. Poly (vinyl alcohol) and hyaluronic acid hydrogels as potential biomaterial systems - A comprehensive review. Journal of Drug Delivery Science and Technology 2022;71:103298. [DOI: 10.1016/j.jddst.2022.103298] [Reference Citation Analysis]
35 Śmiga-matuszowicz M, Janicki B, Jaszcz K, Łukaszczyk J, Kaczmarek M, Lesiak M, Sieroń AL, Simka W, Mierzwiński M, Kusz D. Novel bioactive polyester scaffolds prepared from unsaturated resins based on isosorbide and succinic acid. Materials Science and Engineering: C 2014;45:64-71. [DOI: 10.1016/j.msec.2014.08.069] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
36 Chen Z, Zhang X, Kang L, Xu F, Wang Z, Cui F, Guo Z. Recent progress in injectable bone repair materials research. Front Mater Sci 2015;9:332-45. [DOI: 10.1007/s11706-015-0310-z] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
37 Boda SK, Chen S, Chu K, Kim HJ, Xie J. Electrospraying Electrospun Nanofiber Segments into Injectable Microspheres for Potential Cell Delivery. ACS Appl Mater Interfaces 2018;10:25069-79. [PMID: 29993232 DOI: 10.1021/acsami.8b06386] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 5.8] [Reference Citation Analysis]
38 Killion JA, Geever LM, Cloonan M, Grehan L, Waldron C, Quinn K, Lyons J, Devine DM, Higginbotham CL. Synthesis and photopolymerisation of maleic polyvinyl alcohol based hydrogels for bone tissue engineering. J Polym Res 2014;21. [DOI: 10.1007/s10965-014-0538-9] [Cited by in Crossref: 3] [Article Influence: 0.4] [Reference Citation Analysis]
39 Dorati R, DeTrizio A, Modena T, Conti B, Benazzo F, Gastaldi G, Genta I. Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals (Basel) 2017;10:E96. [PMID: 29231857 DOI: 10.3390/ph10040096] [Cited by in Crossref: 63] [Cited by in F6Publishing: 40] [Article Influence: 12.6] [Reference Citation Analysis]
40 Fu C, Yang X, Tan S, Song L. Enhancing Cell Proliferation and Osteogenic Differentiation of MC3T3-E1 Pre-osteoblasts by BMP-2 Delivery in Graphene Oxide-Incorporated PLGA/HA Biodegradable Microcarriers. Sci Rep 2017;7:12549. [PMID: 28970533 DOI: 10.1038/s41598-017-12935-x] [Cited by in Crossref: 58] [Cited by in F6Publishing: 47] [Article Influence: 11.6] [Reference Citation Analysis]
41 Aryaei A, Jayatissa AH, Jayasuriya AC. Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films. J Biomed Mater Res A 2014;102:2704-12. [PMID: 24108584 DOI: 10.1002/jbm.a.34942] [Cited by in Crossref: 37] [Cited by in F6Publishing: 23] [Article Influence: 4.1] [Reference Citation Analysis]
42 Guven MN, Seckin Altuncu M, Demir Duman F, Eren TN, Yagci Acar H, Avci D. Bisphosphonate-functionalized poly(β-amino ester) network polymers. J Biomed Mater Res A 2017;105:1412-21. [PMID: 28165665 DOI: 10.1002/jbm.a.36026] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 1.4] [Reference Citation Analysis]
43 Kim SE, Yun YP, Shim KS, Park K, Choi SW, Suh DH. Effect of lactoferrin-impregnated porous poly(lactide-co-glycolide) (PLGA) microspheres on osteogenic differentiation of rabbit adipose-derived stem cells (rADSCs). Colloids Surf B Biointerfaces 2014;122:457-64. [PMID: 25096719 DOI: 10.1016/j.colsurfb.2014.06.057] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 4.0] [Reference Citation Analysis]
44 Borda LJ, Macquhae FE, Kirsner RS. Wound Dressings: A Comprehensive Review. Curr Derm Rep 2016;5:287-97. [DOI: 10.1007/s13671-016-0162-5] [Cited by in Crossref: 27] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
45 Gaihre B, Uswatta S, Jayasuriya AC. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. J Funct Biomater 2017;8:E49. [PMID: 29156629 DOI: 10.3390/jfb8040049] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
46 Thao Le TT, Makkar P, Tripathi G, Lee BT. Porous CDHA microspheres laden brushite-based injectable bone substitutes for improved bone regeneration. J Biomed Mater Res B Appl Biomater 2022. [PMID: 35176200 DOI: 10.1002/jbm.b.35033] [Reference Citation Analysis]
47 Mantripragada VP, Jayasuriya AC. IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions. Mater Sci Eng C Mater Biol Appl 2014;42:506-16. [PMID: 25063148 DOI: 10.1016/j.msec.2014.05.068] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
48 Dreifke MB, Jayasuriya AA, Jayasuriya AC. Current wound healing procedures and potential care. Mater Sci Eng C Mater Biol Appl 2015;48:651-62. [PMID: 25579968 DOI: 10.1016/j.msec.2014.12.068] [Cited by in Crossref: 231] [Cited by in F6Publishing: 191] [Article Influence: 28.9] [Reference Citation Analysis]
49 Shim JH, Won JY, Park JH, Bae JH, Ahn G, Kim CH, Lim DH, Cho DW, Yun WS, Bae EB, Jeong CM, Huh JB. Effects of 3D-Printed Polycaprolactone/β-Tricalcium Phosphate Membranes on Guided Bone Regeneration. Int J Mol Sci 2017;18:E899. [PMID: 28441338 DOI: 10.3390/ijms18050899] [Cited by in Crossref: 47] [Cited by in F6Publishing: 39] [Article Influence: 9.4] [Reference Citation Analysis]
50 Karfarma M, Esnaashary MH, Rezaie HR, Javadpour J, Naimi-Jamal MR. Poly(propylene fumarate)/magnesium calcium phosphate injectable bone composite: Effect of filler size and its weight fraction on mechanical properties. Proc Inst Mech Eng H 2019;233:1165-74. [PMID: 31545134 DOI: 10.1177/0954411919877277] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
51 Yu B, Zhang Y, Li X, Wang Q, Ouyang Y, Xia Y, Yu B, Lin B, Li S, Fan Y, Chen Y. The Use of Injectable Chitosan/Nanohydroxyapatite/Collagen Composites with Bone Marrow Mesenchymal Stem Cells to Promote Ectopic Bone Formation In Vivo. Journal of Nanomaterials 2013;2013:1-8. [DOI: 10.1155/2013/506593] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 0.9] [Reference Citation Analysis]
52 Bauer AJP, Liu J, Windsor LJ, Song F, Li B. Current Development of Collagen-Based Biomaterials for Tissue Repair and Regeneration. Soft Materials 2014;12:359-70. [DOI: 10.1080/1539445x.2014.925474] [Cited by in Crossref: 15] [Article Influence: 1.9] [Reference Citation Analysis]
53 Khiabani SS, Aghazadeh M, Rakhtshah J, Davaran S. A review of hydrogel systems based on poly(N-isopropyl acrylamide) for use in the engineering of bone tissues. Colloids Surf B Biointerfaces 2021;208:112035. [PMID: 34455315 DOI: 10.1016/j.colsurfb.2021.112035] [Reference Citation Analysis]
54 Zhao H, Wang X, Jin A, Wang M, Wang Z, Huang X, Dai J, Wang X, Lin D, Shen SG. Reducing relapse and accelerating osteogenesis in rapid maxillary expansion using an injectable mesoporous bioactive glass/fibrin glue composite hydrogel. Bioactive Materials 2022;18:507-25. [DOI: 10.1016/j.bioactmat.2022.03.001] [Reference Citation Analysis]
55 Maisani M, Pezzoli D, Chassande O, Mantovani D. Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment? J Tissue Eng 2017;8:2041731417712073. [PMID: 28634532 DOI: 10.1177/2041731417712073] [Cited by in Crossref: 42] [Cited by in F6Publishing: 44] [Article Influence: 8.4] [Reference Citation Analysis]
56 Xu R, Lian X, Zhao L, Wei Y, Hou D, Niu B, Zhang Q, Huang D, Li F, Gao S. The effect of calcium phosphate and silk fibroin nanofiber tuning on properties of calcium sulfate bone cements. Biomed Mater 2021;16:015009. [DOI: 10.1088/1748-605x/aba7d4] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
57 Pilipchuk SP, Plonka AB, Monje A, Taut AD, Lanis A, Kang B, Giannobile WV. Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dent Mater 2015;31:317-38. [PMID: 25701146 DOI: 10.1016/j.dental.2015.01.006] [Cited by in Crossref: 97] [Cited by in F6Publishing: 75] [Article Influence: 13.9] [Reference Citation Analysis]
58 Esnaashary MH, Rezaie HR, Khavandi A, Javadpour J. Evaluation of setting time and compressive strength of a new bone cement precursor powder containing Mg–Na–Ca. Proc Inst Mech Eng H 2018;232:1017-24. [DOI: 10.1177/0954411918796048] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.8] [Reference Citation Analysis]
59 Khorasani HR, Sanchouli M, Mehrani J, Sabour D. Potential of Bone-Marrow-Derived Mesenchymal Stem Cells for Maxillofacial and Periodontal Regeneration: A Narrative Review. Int J Dent 2021;2021:4759492. [PMID: 34795761 DOI: 10.1155/2021/4759492] [Reference Citation Analysis]
60 Lewandowska-Łańcucka J, Fiejdasz S, Rodzik Ł, Kozieł M, Nowakowska M. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Biomed Mater 2015;10:015020. [PMID: 25668107 DOI: 10.1088/1748-6041/10/1/015020] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 4.4] [Reference Citation Analysis]
61 Dai J, Fu Y, Chen D, Sun Z. A novel and injectable strontium-containing hydroxyapatite bone cement for bone substitution: A systematic evaluation. Mater Sci Eng C Mater Biol Appl 2021;124:112052. [PMID: 33947546 DOI: 10.1016/j.msec.2021.112052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
62 Li X, Ji X, Chen K, Ullah MW, Yuan X, Lei Z, Cao J, Xiao J, Yang G. Development of finasteride/PHBV@polyvinyl alcohol/chitosan reservoir-type microspheres as a potential embolic agent: from in vitro evaluation to animal study. Biomater Sci 2020;8:2797-813. [PMID: 32080688 DOI: 10.1039/c9bm01775e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Wang W, Dang M, Zhang Z, Hu J, Eyster TW, Ni L, Ma PX. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater 2016;36:63-72. [PMID: 26971664 DOI: 10.1016/j.actbio.2016.03.015] [Cited by in Crossref: 67] [Cited by in F6Publishing: 57] [Article Influence: 11.2] [Reference Citation Analysis]
64 Sigusch BW, Dietsch S, Berg A, Voelpel A, Guellmar A, Rabe U, Schnabelrauch M, Steen D, Gitter B, Albrecht V, Watts DC, Kranz S. Antimicrobial photodynamic active biomaterials for periodontal regeneration. Dent Mater 2018;34:1542-54. [PMID: 29970234 DOI: 10.1016/j.dental.2018.06.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
65 Tozzi G, De Mori A, Oliveira A, Roldo M. Composite Hydrogels for Bone Regeneration. Materials (Basel) 2016;9:E267. [PMID: 28773392 DOI: 10.3390/ma9040267] [Cited by in Crossref: 75] [Cited by in F6Publishing: 59] [Article Influence: 12.5] [Reference Citation Analysis]