BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2021;148:1548-61. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Cited by in Crossref: 7] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Renu K, Vinayagam S, Veeraraghavan VP, Mukherjee AG, Wanjari UR, Prabakaran DS, Ganesan R, Dey A, Vellingiri B, Kandasamy S, Ramanathan G, Doss C GP, George A, Gopalakrishnan AV. Molecular Crosstalk between the Immunological Mechanism of the Tumor Microenvironment and Epithelial–Mesenchymal Transition in Oral Cancer. Vaccines 2022;10:1490. [DOI: 10.3390/vaccines10091490] [Reference Citation Analysis]
2 Bano A, Vats R, Yadav P, Bhardwaj R. Exosomics in Oral Cancer Diagnosis, Prognosis, and Therapeutics- An emergent and imperative non-invasive natural nanoparticle-based approach. Crit Rev Oncol Hematol 2022;:103799. [PMID: 36031170 DOI: 10.1016/j.critrevonc.2022.103799] [Reference Citation Analysis]
3 Pan Z, Dong H, Huang N, Fang J. Oxidative stress and inflammation regulation of sirtuins: New insights into common oral diseases. Front Physiol 2022;13:953078. [DOI: 10.3389/fphys.2022.953078] [Reference Citation Analysis]
4 Liu H, Zhang H, Fan H, Tang S, Weng J, Tu W. TAB2 Promotes the Biological Functions of Head and Neck Squamous Cell Carcinoma Cells via EMT and PI3K Pathway. Disease Markers 2022;2022:1-10. [DOI: 10.1155/2022/1217918] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Ai D, Dou Y, Ma C, Nan Z, Wang K, Dong Z, Tan W, Sun J, Qu X. Peri-tumoral infiltrate associates with postoperative prognosis of patients with OSCC: Stronger association in HPV negative patients. Am J Otolaryngol 2022;43:103503. [PMID: 35636086 DOI: 10.1016/j.amjoto.2022.103503] [Reference Citation Analysis]
6 Zhang S, Yu H, Li J, Zhao L, Tan L, Song Q, Sun C. Identification of Prognostic and Tumor Microenvironment by Shelterin Complex-Related Signatures in Oral Squamous Cell Carcinoma. Oxid Med Cell Longev 2022;2022:6849304. [PMID: 35757510 DOI: 10.1155/2022/6849304] [Reference Citation Analysis]
7 Tseng CC, Huang SY, Tsai HP, Wu CW, Hsieh TH. HDAC6 is a prognostic biomarker that mediates IL-13 expression to regulate macrophage polarization through AP-1 in oral squamous cell carcinoma. Sci Rep 2022;12:10513. [PMID: 35732647 DOI: 10.1038/s41598-022-14052-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Yu X, Huang C, Liu J, Shi X, Li X. The significance of PAK4 in signaling and clinicopathology: A review. Open Life Sciences 2022;17:586-98. [DOI: 10.1515/biol-2022-0064] [Reference Citation Analysis]
9 Zou Z, Li B, Wen S, Lin D, Hu Q, Wang Z, Fang J. The Current Landscape of Oral Squamous Cell Carcinoma: A Comprehensive Analysis from ClinicalTrials.gov. Cancer Control 2022;29:107327482210803. [DOI: 10.1177/10732748221080348] [Reference Citation Analysis]
10 Shi R, Zhang W, Zhang J, Yu Z, An L, Zhao R, Zhou X, Wang Z, Wei S, Wang H. CircESRP1 enhances metastasis and epithelial-mesenchymal transition in endometrial cancer via the miR-874-3p/CPEB4 axis. J Transl Med 2022;20:139. [PMID: 35317822 DOI: 10.1186/s12967-022-03334-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Park KR, Leem HH, Kwon YJ, Kwon IK, Hong JT, Yun HM. Falcarindiol Stimulates Apoptotic and Autophagic Cell Death to Attenuate Cell Proliferation, Cell Division, and Metastasis through the PI3K/AKT/mTOR/p70S6K Pathway in Human Oral Squamous Cell Carcinomas. Am J Chin Med 2022;50:295-311. [PMID: 34931585 DOI: 10.1142/S0192415X22500112] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 de Farias Morais HG, de Morais EF, Carlan LM, de Pontes Santos HB, da Silveira ÉJD, de Almeida Freitas R. Epithelial-mesenchymal transition modulates lower lip carcinogenesis and promotes cancer progression. Archives of Oral Biology 2022. [DOI: 10.1016/j.archoralbio.2022.105387] [Reference Citation Analysis]
13 Vanini JV, Koyama LKS, de Matos LL, Junior JMF, Cernea CR, Nagano CP, Coutinho-camillo CM, Hsieh R, Lourenço SV. Epithelial-mesenchymal transition related to bone invasion in oral squamous cell carcinoma. Journal of Bone Oncology 2022. [DOI: 10.1016/j.jbo.2022.100418] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Mogre S, Makani V, Pradhan S, Devre P, More S, Vaidya M, Dmello C. Biomarker Potential of Vimentin in Oral Cancers. Life 2022;12:150. [DOI: 10.3390/life12020150] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Park KR, Lee H, Kim SH, Yun HM. Paeoniflorigenone regulates apoptosis, autophagy, and necroptosis to induce anti-cancer bioactivities in human head and neck squamous cell carcinomas. J Ethnopharmacol 2022;:115000. [PMID: 35051602 DOI: 10.1016/j.jep.2022.115000] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 You Y, Tian Z, Du Z, Wu K, Xu G, Dai M, Wang Y, Xiao M. M1-like tumor-associated macrophages cascade a mesenchymal/stem-like phenotype of oral squamous cell carcinoma via the IL6/Stat3/THBS1 feedback loop. J Exp Clin Cancer Res 2022;41:10. [PMID: 34991668 DOI: 10.1186/s13046-021-02222-z] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
17 de Camargo MR, Frazon TF, Inacio KK, Smiderle FR, Amôr NG, Dionísio TJ, Santos CF, Rodini CO, Lara VS. Ganoderma lucidum polysaccharides inhibit in vitro tumorigenesis, cancer stem cell properties and epithelial-mesenchymal transition in oral squamous cell carcinoma. J Ethnopharmacol 2021;286:114891. [PMID: 34910952 DOI: 10.1016/j.jep.2021.114891] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
18 Yan J, Xu H. Regulation of transforming growth factor-beta1 by circANKS1B/miR-515-5p affects the metastatic potential and cisplatin resistance in oral squamous cell carcinoma. Bioengineered 2021. [PMID: 34781814 DOI: 10.1080/21655979.2021.2005221] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
19 Zhang Z, Xie H, Zuo W, Tang J, Zeng Z, Cai W, Lai L, Lu Y, Shen L, Dong X, Yin L, Tang D, Dai Y. Lysine 2-hydroxyisobutyrylation proteomics reveals protein modification alteration in the actin cytoskeleton pathway of oral squamous cell carcinoma. J Proteomics 2021;249:104371. [PMID: 34500091 DOI: 10.1016/j.jprot.2021.104371] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
20 Zhu F, Yang T, Yao M, Shen T, Fang C. HNRNPA2B1, as a m6A Reader, Promotes Tumorigenesis and Metastasis of Oral Squamous Cell Carcinoma. Front Oncol 2021;11:716921. [PMID: 34631545 DOI: 10.3389/fonc.2021.716921] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
21 Tong S, Wang X, Guo X, Lu Z. Knockdown of lncRNA IGF2BP2-AS1 inhibits proliferation and migration of oral squamous cell carcinoma cells via the Wnt/β-catenin pathway. J Oral Pathol Med 2021. [PMID: 34637162 DOI: 10.1111/jop.13248] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Peralta S, Duhamel GE, Katt WP, Heikinheimo K, Miller AD, Ahmed F, McCleary-Wheeler AL, Grenier JK. Comparative transcriptional profiling of canine acanthomatous ameloblastoma and homology with human ameloblastoma. Sci Rep 2021;11:17792. [PMID: 34493785 DOI: 10.1038/s41598-021-97430-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Noguchi S, Hirano K, Tanimoto N, Shimada T, Akiyoshi H. SLUG is upregulated and induces epithelial mesenchymal transition in canine oral squamous cell carcinoma. Vet Comp Oncol 2021. [PMID: 34310030 DOI: 10.1111/vco.12755] [Reference Citation Analysis]
24 Franz L, Nicolè L, Frigo AC, Ottaviano G, Gaudioso P, Saccardo T, Visconti F, Cappellesso R, Blandamura S, Fassina A, Marioni G. Epithelial-to-Mesenchymal Transition and Neoangiogenesis in Laryngeal Squamous Cell Carcinoma. Cancers (Basel) 2021;13:3339. [PMID: 34283055 DOI: 10.3390/cancers13133339] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
25 Liu H, Xu X, Wu R, Bi L, Zhang C, Chen H, Yang Y. Antioral Squamous Cell Carcinoma Effects of Carvacrol via Inhibiting Inflammation, Proliferation, and Migration Related to Nrf2/Keap1 Pathway. Biomed Res Int 2021;2021:6616547. [PMID: 34212035 DOI: 10.1155/2021/6616547] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
26 Li Z, Liu B, Li C, Sun S, Zhang H, Sun S, Wang Z, Zhang X. NRBP2 Functions as a Tumor Suppressor and Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer. Front Oncol 2021;11:634026. [PMID: 33816275 DOI: 10.3389/fonc.2021.634026] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Fong D, San Nicolò KO, Alber M, Mitterer M. Evaluating the longitudinal effectiveness of preventive measures against COVID-19 and seroprevalence of IgG antibodies to SARS-CoV-2 in cancer outpatients and healthcare workers. Wien Klin Wochenschr 2021;133:359-63. [PMID: 33502609 DOI: 10.1007/s00508-020-01807-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
28 Song A, Wu Y, Chu W, Yang X, Zhu Z, Yan E, Zhang W, Zhou J, Ding X, Liu J, Zhu H, Ye J, Wu Y, Zheng Y, Song X. Involvement of miR-619-5p in resistance to cisplatin by regulating ATXN3 in oral squamous cell carcinoma. Int J Biol Sci 2021;17:430-47. [PMID: 33613103 DOI: 10.7150/ijbs.54014] [Cited by in F6Publishing: 5] [Reference Citation Analysis]