BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Iwaki K, Shibata K, Ohta M, Endo Y, Uchida H, Tominaga M, Okunaga R, Kai S, Kitano S. A small interfering RNA targeting proteinase-activated receptor-2 is effective in suppression of tumor growth in a Panc1 xenograft model. Int J Cancer 2008;122:658-63. [PMID: 17935125 DOI: 10.1002/ijc.23123] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 1.3] [Reference Citation Analysis]
Number Citing Articles
1 Ungefroren H, Gieseler F, Kaufmann R, Settmacher U, Lehnert H, Rauch BH. Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer. Int J Mol Sci 2018;19:E1568. [PMID: 29795022 DOI: 10.3390/ijms19061568] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 5.0] [Reference Citation Analysis]
2 Zeeh F, Witte D, Gädeken T, Rauch BH, Grage-Griebenow E, Leinung N, Fromm SJ, Stölting S, Mihara K, Kaufmann R, Settmacher U, Lehnert H, Hollenberg MD, Ungefroren H. Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5. Oncotarget 2016;7:41095-109. [PMID: 27248167 DOI: 10.18632/oncotarget.9600] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 4.6] [Reference Citation Analysis]
3 Ungefroren H, Witte D, Rauch BH, Settmacher U, Lehnert H, Gieseler F, Kaufmann R. Proteinase-Activated Receptor 2 May Drive Cancer Progression by Facilitating TGF-β Signaling. Int J Mol Sci 2017;18:E2494. [PMID: 29165389 DOI: 10.3390/ijms18112494] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
4 Meryet-Figuière M, Lecerf C, Varin E, Coll JL, Louis MH, Dutoit S, Giffard F, Blanc-Fournier C, Hedir S, Vigneron N, Brotin E, Pelletier L, Josserand V, Denoyelle C, Poulain L. Atelocollagen-mediated in vivo siRNA transfection in ovarian carcinoma is influenced by tumor site, siRNA target and administration route. Oncol Rep 2017;38:1949-58. [PMID: 28791387 DOI: 10.3892/or.2017.5882] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
5 Witte D, Zeeh F, Gädeken T, Gieseler F, Rauch BH, Settmacher U, Kaufmann R, Lehnert H, Ungefroren H. Proteinase-Activated Receptor 2 Is a Novel Regulator of TGF-β Signaling in Pancreatic Cancer. J Clin Med 2016;5:E111. [PMID: 27916875 DOI: 10.3390/jcm5120111] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
6 Párraga JE, Ravina M, Seijo B, Sanchez A. Nanocarriers: siRNA Delivery. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials 2015. [DOI: 10.1081/e-ebpp-120049286] [Reference Citation Analysis]
7 Perry SR, Xu W, Wirija A, Lim J, Yau MK, Stoermer MJ, Lucke AJ, Fairlie DP. Three Homology Models of PAR2 Derived from Different Templates: Application to Antagonist Discovery. J Chem Inf Model 2015;55:1181-91. [PMID: 26000704 DOI: 10.1021/acs.jcim.5b00087] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
8 Shi K, Queiroz KC, Roelofs JJ, van Noesel CJ, Richel DJ, Spek CA. Protease-activated receptor 2 suppresses lymphangiogenesis and subsequent lymph node metastasis in a murine pancreatic cancer model: PAR-2 reduces metastasis in pancreatic cancer model. J Pathol 2014;234:398-409. [DOI: 10.1002/path.4411] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 1.6] [Reference Citation Analysis]
9 Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT, Fairlie DP. Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol 2012;165:1413-23. [PMID: 21806599 DOI: 10.1111/j.1476-5381.2011.01610.x] [Cited by in Crossref: 84] [Cited by in F6Publishing: 87] [Article Influence: 7.6] [Reference Citation Analysis]
10 Hiram-Bab S, Shapira Y, Gershengorn MC, Oron Y. Serum deprivation induces glucose response and intercellular coupling in human pancreatic adenocarcinoma PANC-1 cells. Pancreas 2012;41:238-44. [PMID: 22129530 DOI: 10.1097/MPA.0b013e3182277e56] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.5] [Reference Citation Analysis]
11 Chen S, Zhaori G. Potential clinical applications of siRNA technique: benefits and limitations: CLINICAL APPLICATION OF SIRNA TECHNIQUE. European Journal of Clinical Investigation 2011;41:221-32. [DOI: 10.1111/j.1365-2362.2010.02400.x] [Cited by in Crossref: 72] [Cited by in F6Publishing: 74] [Article Influence: 5.5] [Reference Citation Analysis]
12 Eguchi H, Iwaki K, Shibata K, Ogawa T, Ohta M, Kitano S. Protease-activated receptor-2 regulates cyclooxygenase-2 expression in human bile duct cancer via the pathways of mitogen-activated protein kinases and nuclear factor kappa B. J Hepatobiliary Pancreat Sci 2011;18:147-53. [PMID: 20740367 DOI: 10.1007/s00534-010-0318-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.2] [Reference Citation Analysis]
13 He L, Ingram A, Rybak AP, Tang D. Shank-interacting protein-like 1 promotes tumorigenesis via PTEN inhibition in human tumor cells. J Clin Invest 2010;120:2094-108. [PMID: 20458142 DOI: 10.1172/JCI40778] [Cited by in Crossref: 79] [Cited by in F6Publishing: 84] [Article Influence: 6.1] [Reference Citation Analysis]
14 Fröhlich T, Wagner E. Peptide- and polymer-based delivery of therapeutic RNA. Soft Matter 2010;6:226-34. [DOI: 10.1039/b916053a] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 2.5] [Reference Citation Analysis]
15 Makita N, Nagahara S. Recent progress of nucleic acid delivery system mediated by atelocollagen. Official Journal of the Japan Society of Drug Delivery System 2010;25:607-614. [DOI: 10.2745/dds.25.607] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.4] [Reference Citation Analysis]
16 López-Fraga M, Martínez T, Jiménez A. RNA interference technologies and therapeutics: from basic research to products. BioDrugs 2009;23:305-32. [PMID: 19754220 DOI: 10.2165/11318190-000000000-00000] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 2.4] [Reference Citation Analysis]
17 Richardt-Pargmann D, Vollmer J. Stimulation of the immune system by therapeutic antisense oligodeoxynucleotides and small interfering RNAs via nucleic acid receptors. Ann N Y Acad Sci 2009;1175:40-54. [PMID: 19796076 DOI: 10.1111/j.1749-6632.2009.04971.x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.6] [Reference Citation Analysis]
18 Howard KA. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev 2009;61:710-20. [PMID: 19356738 DOI: 10.1016/j.addr.2009.04.001] [Cited by in Crossref: 177] [Cited by in F6Publishing: 181] [Article Influence: 12.6] [Reference Citation Analysis]
19 Podesta JE, Al-Jamal KT, Herrero MA, Tian B, Ali-Boucetta H, Hegde V, Bianco A, Prato M, Kostarelos K. Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. Small 2009;5:1176-85. [PMID: 19306454 DOI: 10.1002/smll.200801572] [Cited by in Crossref: 33] [Cited by in F6Publishing: 68] [Article Influence: 2.4] [Reference Citation Analysis]
20 Huang C, Li M, Chen C, Yao Q. Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 2008;12:637-45. [PMID: 18410245 DOI: 10.1517/14728222.12.5.637] [Cited by in Crossref: 90] [Cited by in F6Publishing: 95] [Article Influence: 6.0] [Reference Citation Analysis]