BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tiwari MN, Mohan S, Biala Y, Yaari Y. Differential contributions of Ca2+ -activated K+ channels and Na+ /K+ -ATPases to the generation of the slow afterhyperpolarization in CA1 pyramidal cells. Hippocampus 2018;28:338-57. [PMID: 29431274 DOI: 10.1002/hipo.22836] [Cited by in Crossref: 19] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]
Number Citing Articles
1 Ierusalimsky VN, Balaban PM, Nikitin ES. Nav1.6 but not KCa3.1 channels contribute to heterogeneity in coding abilities and dynamics of action potentials in the L5 neocortical pyramidal neurons. Biochemical and Biophysical Research Communications 2022;615:102-8. [DOI: 10.1016/j.bbrc.2022.05.050] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Sharples SA, Parker J, Vargas A, Milla-cruz JJ, Lognon AP, Cheng N, Young L, Shonak A, Cymbalyuk GS, Whelan PJ. Contributions of h- and Na+/K+ Pump Currents to the Generation of Episodic and Continuous Rhythmic Activities. Front Cell Neurosci 2022;15:715427. [DOI: 10.3389/fncel.2021.715427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Sahu G, Turner RW. The Molecular Basis for the Calcium-Dependent Slow Afterhyperpolarization in CA1 Hippocampal Pyramidal Neurons. Front Physiol 2021;12:759707. [PMID: 35002757 DOI: 10.3389/fphys.2021.759707] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Hachoumi L, Rensner R, Richmond C, Picton L, Zhang H, Sillar KT. Bimodal modulation of short-term motor memory via dynamic sodium pumps in a vertebrate spinal cord. Current Biology 2022. [DOI: 10.1016/j.cub.2022.01.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Amakhin DV, Soboleva EB, Chizhov AV, Zaitsev AV. Insertion of Calcium-Permeable AMPA Receptors during Epileptiform Activity In Vitro Modulates Excitability of Principal Neurons in the Rat Entorhinal Cortex. Int J Mol Sci 2021;22:12174. [PMID: 34830051 DOI: 10.3390/ijms222212174] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Rayi PR, Kaphzan H. Electrophysiological Characterization of Regular and Burst Firing Pyramidal Neurons of the Dorsal Subiculum in an Angelman Syndrome Mouse Model. Front Cell Neurosci 2021;15:670998. [PMID: 34512263 DOI: 10.3389/fncel.2021.670998] [Reference Citation Analysis]
7 Mohan S, Tiwari MN, Stanojević M, Biala Y, Yaari Y. Muscarinic regulation of the neuronal Na+ /K+ -ATPase in rat hippocampus. J Physiol 2021;599:3735-54. [PMID: 34148230 DOI: 10.1113/JP281460] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
8 Laker D, Tolle F, Stegen M, Heerdegen M, Köhling R, Kirschstein T, Wolfart J. Kv7 and Kir6 Channels Shape the Slow AHP in Mouse Dentate Gyrus Granule Cells and Control Burst-like Firing Behavior. Neuroscience 2021;467:56-72. [PMID: 34048798 DOI: 10.1016/j.neuroscience.2021.05.025] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Nikitin ES, Vinogradova LV. Potassium channels as prominent targets and tools for the treatment of epilepsy. Expert Opin Ther Targets 2021;25:223-35. [PMID: 33754930 DOI: 10.1080/14728222.2021.1908263] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Sterlini B, Romei A, Parodi C, Aprile D, Oneto M, Aperia A, Valente P, Valtorta F, Fassio A, Baldelli P, Benfenati F, Corradi A. An interaction between PRRT2 and Na+/K+ ATPase contributes to the control of neuronal excitability. Cell Death Dis 2021;12:292. [PMID: 33731672 DOI: 10.1038/s41419-021-03569-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
11 Kinoshita PF, Orellana AMM, Nakao VW, de Souza Port's NM, Quintas LEM, Kawamoto EM, Scavone C. The Janus face of ouabain in Na+ /K+ -ATPase and calcium signalling in neurons. Br J Pharmacol 2021. [PMID: 33644859 DOI: 10.1111/bph.15419] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Borgini M, Mondal P, Liu R, Wipf P. Chemical modulation of Kv7 potassium channels. RSC Med Chem 2021;12:483-537. [PMID: 34046626 DOI: 10.1039/d0md00328j] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
13 Rayi PR, Bagrov AY, Kaphzan H. Chronic α1-Na/K-ATPase inhibition reverses the elongation of the axon initial segment of the hippocampal CA1 pyramidal neurons in Angelman syndrome model mice. Neuropsychopharmacology 2021;46:654-64. [PMID: 33214655 DOI: 10.1038/s41386-020-00907-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Severin D, Gallagher M, Kirkwood A. Afterhyperpolarization amplitude in CA1 pyramidal cells of aged Long-Evans rats characterized for individual differences. Neurobiol Aging 2020;96:43-8. [PMID: 32932137 DOI: 10.1016/j.neurobiolaging.2020.07.022] [Reference Citation Analysis]
15 Mergenthal A, Bouteiller JC, Yu GJ, Berger TW. A Computational Model of the Cholinergic Modulation of CA1 Pyramidal Cell Activity. Front Comput Neurosci 2020;14:75. [PMID: 33013341 DOI: 10.3389/fncom.2020.00075] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Roshchin MV, Ierusalimsky VN, Balaban PM, Nikitin ES. Ca2+-activated KCa3.1 potassium channels contribute to the slow afterhyperpolarization in L5 neocortical pyramidal neurons. Sci Rep 2020;10:14484. [PMID: 32879404 DOI: 10.1038/s41598-020-71415-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
17 Moore SJ, Murphy GG. The role of L-type calcium channels in neuronal excitability and aging. Neurobiol Learn Mem 2020;173:107230. [PMID: 32407963 DOI: 10.1016/j.nlm.2020.107230] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 0.5] [Reference Citation Analysis]
18 Medalla M, Chang W, Calderazzo SM, Go V, Tsolias A, Goodliffe JW, Pathak D, De Alba D, Pessina M, Rosene DL, Buller B, Moore TL. Treatment with Mesenchymal-Derived Extracellular Vesicles Reduces Injury-Related Pathology in Pyramidal Neurons of Monkey Perilesional Ventral Premotor Cortex. J Neurosci 2020;40:3385-407. [PMID: 32241837 DOI: 10.1523/JNEUROSCI.2226-19.2020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
19 Rayi PR, Koyavski L, Chakraborty D, Bagrov A, Kaphzan H. α1-Na/K-ATPase inhibition rescues aberrant dendritic calcium dynamics and memory deficits in the hippocampus of an Angelman syndrome mouse model. Progress in Neurobiology 2019;182:101676. [DOI: 10.1016/j.pneurobio.2019.101676] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
20 Tiwari MN, Mohan S, Biala Y, Yaari Y. Protein Kinase A-Mediated Suppression of the Slow Afterhyperpolarizing KCa3.1 Current in Temporal Lobe Epilepsy. J Neurosci 2019;39:9914-26. [PMID: 31672789 DOI: 10.1523/JNEUROSCI.1603-19.2019] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Dunn AR, Kaczorowski CC. Regulation of intrinsic excitability: Roles for learning and memory, aging and Alzheimer's disease, and genetic diversity. Neurobiol Learn Mem 2019;164:107069. [PMID: 31442579 DOI: 10.1016/j.nlm.2019.107069] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
22 Sahu G, Wazen R, Colarusso P, Chen SW, Zamponi GW, Turner RW. Junctophilin Proteins Tether a Cav1-RyR2-KCa3.1 Tripartite Complex to Regulate Neuronal Excitability. Cell Reports 2019;28:2427-2442.e6. [DOI: 10.1016/j.celrep.2019.07.075] [Cited by in Crossref: 16] [Cited by in F6Publishing: 23] [Article Influence: 5.3] [Reference Citation Analysis]
23 Mohan S, Tiwari MN, Biala Y, Yaari Y. Regulation of Neuronal Na+/K+-ATPase by Specific Protein Kinases and Protein Phosphatases. J Neurosci 2019;39:5440-51. [PMID: 31085608 DOI: 10.1523/JNEUROSCI.0265-19.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
24 Higham J, Sahu G, Wazen RM, Colarusso P, Gregorie A, Harvey BSJ, Goudswaard L, Varley G, Sheppard DN, Turner RW, Marrion NV. Preferred Formation of Heteromeric Channels between Coexpressed SK1 and IKCa Channel Subunits Provides a Unique Pharmacological Profile of Ca2+-Activated Potassium Channels. Mol Pharmacol 2019;96:115-26. [PMID: 31048549 DOI: 10.1124/mol.118.115634] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
25 Key J, Mueller AK, Gispert S, Matschke L, Wittig I, Corti O, Münch C, Decher N, Auburger G. Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiol Dis 2019;127:114-30. [PMID: 30763678 DOI: 10.1016/j.nbd.2019.02.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
26 Tiwari MN, Mohan S, Biala Y, Yaari Y. Differential contributions of Ca2+ -activated K+ channels and Na+ /K+ -ATPases to the generation of the slow afterhyperpolarization in CA1 pyramidal cells. Hippocampus 2018;28:338-57. [PMID: 29431274 DOI: 10.1002/hipo.22836] [Cited by in Crossref: 19] [Cited by in F6Publishing: 26] [Article Influence: 4.8] [Reference Citation Analysis]