BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Häussinger D. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 2009;50:861-70. [PMID: 19582812 DOI: 10.1002/hep.23032] [Cited by in Crossref: 195] [Cited by in F6Publishing: 174] [Article Influence: 15.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang F, Xiao X, Li Y, Wu H, Deng X, Jiang Y, Zhang W, Wang J, Ma X, Zhao Y. Therapeutic Opportunities of GPBAR1 in Cholestatic Diseases. Front Pharmacol 2021;12:805269. [PMID: 35095513 DOI: 10.3389/fphar.2021.805269] [Reference Citation Analysis]
2 Klindt C, Reich M, Hellwig B, Stindt J, Rahnenführer J, Hengstler JG, Köhrer K, Schoonjans K, Häussinger D, Keitel V. The G Protein-Coupled Bile Acid Receptor TGR5 (Gpbar1) Modulates Endothelin-1 Signaling in Liver. Cells 2019;8:E1467. [PMID: 31752395 DOI: 10.3390/cells8111467] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
3 Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP. The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 2010;52:1489-96. [PMID: 20721884 DOI: 10.1002/hep.23810] [Cited by in Crossref: 228] [Cited by in F6Publishing: 205] [Article Influence: 19.0] [Reference Citation Analysis]
4 Yang H, Liu H, Jiao Y, Qian J. Roux-en-Y Gastrointestinal Bypass Promotes Activation of TGR5 and Peptide YY. Endocr Metab Immune Disord Drug Targets 2020;20:1262-7. [PMID: 32600238 DOI: 10.2174/1871530320666200628024500] [Reference Citation Analysis]
5 Pellicciari R, Gioiello A, Macchiarulo A, Thomas C, Rosatelli E, Natalini B, Sardella R, Pruzanski M, Roda A, Pastorini E, Schoonjans K, Auwerx J. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J Med Chem. 2009;52:7958-7961. [PMID: 20014870 DOI: 10.1021/jm901390p] [Cited by in Crossref: 180] [Cited by in F6Publishing: 167] [Article Influence: 15.0] [Reference Citation Analysis]
6 Karlsen TH, Franke A, Melum E, Kaser A, Hov JR, Balschun T, Lie BA, Bergquist A, Schramm C, Weismüller TJ. Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology. 2010;138:1102-1111. [PMID: 19944697 DOI: 10.1053/j.gastro.2009.11.046] [Cited by in Crossref: 240] [Cited by in F6Publishing: 196] [Article Influence: 18.5] [Reference Citation Analysis]
7 Chiang JY. Bile acid metabolism and signaling. Compr Physiol. 2013;3:1191-1212. [PMID: 23897684 DOI: 10.1002/cphy.c120023] [Cited by in Crossref: 200] [Cited by in F6Publishing: 329] [Article Influence: 22.2] [Reference Citation Analysis]
8 Amigo L, Husche C, Zanlungo S, Lütjohann D, Arrese M, Miquel JF, Rigotti A, Nervi F. Cholecystectomy increases hepatic triglyceride content and very-low-density lipoproteins production in mice. Liver Int. 2011;31:52-64. [PMID: 21040411 DOI: 10.1111/j.1478-3231.2010.02361.x] [Cited by in Crossref: 44] [Cited by in F6Publishing: 42] [Article Influence: 3.7] [Reference Citation Analysis]
9 Keitel V, Häussinger D. TGR5 in cholangiocytes. Curr Opin Gastroenterol 2013;29:299-304. [PMID: 23429467 DOI: 10.1097/MOG.0b013e32835f3f14] [Cited by in F6Publishing: 17] [Reference Citation Analysis]
10 Karlsen TH, Boberg KM. Update on primary sclerosing cholangitis. J Hepatol. 2013;59:571-582. [PMID: 23603668 DOI: 10.1016/j.jhep.2013.03.015] [Cited by in Crossref: 77] [Cited by in F6Publishing: 69] [Article Influence: 8.6] [Reference Citation Analysis]
11 Fiorucci S, Distrutti E. Linking liver metabolic and vascular disease via bile acid signaling. Trends Mol Med 2022;28:51-66. [PMID: 34815180 DOI: 10.1016/j.molmed.2021.10.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Alemi F, Kwon E, Poole DP, Lieu T, Lyo V, Cattaruzza F, Cevikbas F, Steinhoff M, Nassini R, Materazzi S, Guerrero-Alba R, Valdez-Morales E, Cottrell GS, Schoonjans K, Geppetti P, Vanner SJ, Bunnett NW, Corvera CU. The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest. 2013;123:1513-1530. [PMID: 23524965 DOI: 10.1172/jci64551] [Cited by in Crossref: 210] [Cited by in F6Publishing: 94] [Article Influence: 23.3] [Reference Citation Analysis]
13 Comeglio P, Morelli A, Adorini L, Maggi M, Vignozzi L. Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opin Investig Drugs 2017;26:1215-28. [PMID: 28949776 DOI: 10.1080/13543784.2017.1385760] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
14 Næss S, Shiryaev A, Hov JR, Franke A, Karlsen TH. Genetics in primary sclerosing cholangitis. Clin Res Hepatol Gastroenterol. 2012;36:325-333. [PMID: 22554879 DOI: 10.1016/j.clinre.2012.02.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
15 Hendrick SM, Mroz MS, Greene CM, Keely SJ, Harvey BJ. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2014;307:L407-18. [PMID: 24993131 DOI: 10.1152/ajplung.00352.2013] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 2.3] [Reference Citation Analysis]
16 Zhang Y, Guo X, Guo J, He Q, Li H, Song Y, Zhang H. Lactobacillus casei reduces susceptibility to type 2 diabetes via microbiota-mediated body chloride ion influx. Sci Rep 2014;4:5654. [PMID: 25133590 DOI: 10.1038/srep05654] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 4.3] [Reference Citation Analysis]
17 Simbrunner B, Trauner M, Reiberger T. Review article: therapeutic aspects of bile acid signalling in the gut-liver axis. Aliment Pharmacol Ther 2021;54:1243-62. [PMID: 34555862 DOI: 10.1111/apt.16602] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
18 Forsgård RA, Korpela R, Stenman LK, Osterlund P, Holma R. Deoxycholic acid induced changes in electrophysiological parameters and macromolecular permeability in murine small intestine with and without functional enteric nervous system plexuses. Neurogastroenterol Motil 2014;26:1179-87. [PMID: 24954839 DOI: 10.1111/nmo.12383] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
19 Di Ciaula A, Wang DQ, Portincasa P. An update on the pathogenesis of cholesterol gallstone disease. Curr Opin Gastroenterol 2018;34:71-80. [PMID: 29283909 DOI: 10.1097/MOG.0000000000000423] [Cited by in Crossref: 66] [Cited by in F6Publishing: 49] [Article Influence: 22.0] [Reference Citation Analysis]
20 Baghdasaryan A, Claudel T, Gumhold J, Silbert D, Adorini L, Roda A, Vecchiotti S, Gonzalez FJ, Schoonjans K, Strazzabosco M, Fickert P, Trauner M. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO⁻₃ output. Hepatology 2011;54:1303-12. [PMID: 22006858 DOI: 10.1002/hep.24537] [Cited by in Crossref: 162] [Cited by in F6Publishing: 143] [Article Influence: 14.7] [Reference Citation Analysis]
21 Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol 2022. [PMID: 35415765 DOI: 10.1007/s00281-022-00935-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
22 Lou G, Ma X, Fu X, Meng Z, Zhang W, Wang YD, Van Ness C, Yu D, Xu R, Huang W. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells. PLoS One 2014;9:e93567. [PMID: 24755711 DOI: 10.1371/journal.pone.0093567] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 5.5] [Reference Citation Analysis]
23 Chiang JYL, Ferrell JM. Bile Acid Metabolism in Liver Pathobiology. Gene Expr. 2018;18:71-87. [PMID: 29325602 DOI: 10.3727/105221618x15156018385515] [Cited by in Crossref: 103] [Cited by in F6Publishing: 58] [Article Influence: 25.8] [Reference Citation Analysis]
24 van Niekerk J, Kersten R, Beuers U. Role of Bile Acids and the Biliary HCO 3 − Umbrella in the Pathogenesis of Primary Biliary Cholangitis. Clinics in Liver Disease 2018;22:457-79. [DOI: 10.1016/j.cld.2018.03.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
25 Camilleri M, Katzka DA. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Genetic epidemiology and pharmacogenetics in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1075-G1084. [PMID: 22403795 DOI: 10.1152/ajpgi.00537.2011] [Cited by in Crossref: 71] [Cited by in F6Publishing: 74] [Article Influence: 7.1] [Reference Citation Analysis]
26 Lieu T, Jayaweera G, Bunnett NW. GPBA: a GPCR for bile acids and an emerging therapeutic target for disorders of digestion and sensation. Br J Pharmacol. 2014;171:1156-1166. [PMID: 24111923 DOI: 10.1111/bph.12426] [Cited by in Crossref: 35] [Cited by in F6Publishing: 33] [Article Influence: 4.4] [Reference Citation Analysis]
27 Cai Z, Yuan S, Zhong Y, Deng L, Li J, Tan X, Feng J. Amelioration of Endothelial Dysfunction in Diabetes: Role of Takeda G Protein-Coupled Receptor 5. Front Pharmacol 2021;12:637051. [PMID: 33995040 DOI: 10.3389/fphar.2021.637051] [Reference Citation Analysis]
28 Mykytyn K, Askwith C. G-Protein-Coupled Receptor Signaling in Cilia. Cold Spring Harb Perspect Biol 2017;9:a028183. [PMID: 28159877 DOI: 10.1101/cshperspect.a028183] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 7.6] [Reference Citation Analysis]
29 Xu Y. Bile Acid Receptor Modulators in Metabolic Diseases. Elsevier; 2011. pp. 69-87. [DOI: 10.1016/b978-0-12-386009-5.00022-9] [Cited by in Crossref: 5] [Article Influence: 0.5] [Reference Citation Analysis]
30 Perino A, Pols TW, Nomura M, Stein S, Pellicciari R, Schoonjans K. TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation. J Clin Invest 2014;124:5424-36. [PMID: 25365223 DOI: 10.1172/JCI76289] [Cited by in Crossref: 97] [Cited by in F6Publishing: 50] [Article Influence: 12.1] [Reference Citation Analysis]
31 Ma K, Tang D, Yu C, Zhao L. Progress in research on the roles of TGR5 receptor in liver diseases. Scand J Gastroenterol 2021;56:717-26. [PMID: 33771073 DOI: 10.1080/00365521.2021.1903547] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Yu Q, Jiang Z, Zhang L. Bile acid regulation: A novel therapeutic strategy in non-alcoholic fatty liver disease. Pharmacol Ther 2018;190:81-90. [PMID: 29684468 DOI: 10.1016/j.pharmthera.2018.04.005] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
33 Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022;79. [DOI: 10.1007/s00018-022-04278-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metab. 2013;17:657-669. [PMID: 23602448 DOI: 10.1016/j.cmet.2013.03.013] [Cited by in Crossref: 478] [Cited by in F6Publishing: 439] [Article Influence: 53.1] [Reference Citation Analysis]
35 Boyer JL, Soroka CJ. A cholecystohepatic shunt pathway: does the gallbladder protect the liver? Gastroenterology 2012;142:1416-9. [PMID: 22542828 DOI: 10.1053/j.gastro.2012.04.036] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 0.6] [Reference Citation Analysis]
36 Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol Rev 2021;101:683-731. [PMID: 32790577 DOI: 10.1152/physrev.00049.2019] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
37 Holter MM, Chirikjian MK, Briere DA, Maida A, Sloop KW, Schoonjans K, Cummings BP. Compound 18 Improves Glucose Tolerance in a Hepatocyte TGR5-dependent Manner in Mice. Nutrients 2020;12:E2124. [PMID: 32708970 DOI: 10.3390/nu12072124] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Alemi F, Poole DP, Chiu J, Schoonjans K, Cattaruzza F, Grider JR, Bunnett NW, Corvera CU. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013;144:145-54. [PMID: 23041323 DOI: 10.1053/j.gastro.2012.09.055] [Cited by in Crossref: 159] [Cited by in F6Publishing: 155] [Article Influence: 15.9] [Reference Citation Analysis]
39 Di Ciaula A, Garruti G, Wang DQ, Portincasa P. Cholecystectomy and risk of metabolic syndrome. Eur J Intern Med 2018;53:3-11. [PMID: 29706426 DOI: 10.1016/j.ejim.2018.04.019] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
40 Chen T, Reich NW, Bell N, Finn PD, Rodriguez D, Kohler J, Kozuka K, He L, Spencer AG, Charmot D, Navre M, Carreras CW, Koo-mccoy S, Tabora J, Caldwell JS, Jacobs JW, Lewis JG. Design of Gut-Restricted Thiazolidine Agonists of G Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5). J Med Chem 2018;61:7589-613. [DOI: 10.1021/acs.jmedchem.8b00308] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
41 Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis - a comprehensive review. J Hepatol. 2017;67:1298-1323. [PMID: 28802875 DOI: 10.1016/j.jhep.2017.07.022] [Cited by in Crossref: 244] [Cited by in F6Publishing: 209] [Article Influence: 48.8] [Reference Citation Analysis]
42 Feldman AG, Sokol RJ. Recent developments in diagnostics and treatment of neonatal cholestasis. Semin Pediatr Surg 2020;29:150945. [PMID: 32861449 DOI: 10.1016/j.sempedsurg.2020.150945] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
43 Di Ciaula A, Portincasa P. Recent advances in understanding and managing cholesterol gallstones. F1000Res. 2018;7. [PMID: 30345010 DOI: 10.12688/f1000research.15505.1] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
44 Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Chenodeoxycholic acid stimulates Cl(-) secretion via cAMP signaling and increases cystic fibrosis transmembrane conductance regulator phosphorylation in T84 cells. Am J Physiol Cell Physiol. 2013;305:C447-C456. [PMID: 23761628 DOI: 10.1152/ajpcell.00416.2012] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 4.3] [Reference Citation Analysis]
45 De Marino S, Carino A, Masullo D, Finamore C, Sepe V, Marchianò S, Di Leva FS, Limongelli V, Fiorucci S, Zampella A. Epoxide functionalization on cholane side chains in the identification of G-protein coupled bile acid receptor (GPBAR1) selective agonists. RSC Adv 2017;7:32877-85. [DOI: 10.1039/c7ra04922f] [Cited by in Crossref: 4] [Article Influence: 0.8] [Reference Citation Analysis]
46 Cipriani S, Renga B, D'Amore C, Simonetti M, De Tursi AA, Carino A, Monti MC, Sepe V, Zampella A, Fiorucci S. Impaired Itching Perception in Murine Models of Cholestasis Is Supported by Dysregulation of GPBAR1 Signaling. PLoS One 2015;10:e0129866. [PMID: 26177448 DOI: 10.1371/journal.pone.0129866] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 4.0] [Reference Citation Analysis]
47 Chen Y, Wu S, Qi L, Dai W, Tian Y, Kong J. Altered absorptive function in the gall bladder during cholesterol gallstone formation is associated with abnormal NHE3 complex formation. J Physiol Biochem 2020;76:427-35. [PMID: 32557227 DOI: 10.1007/s13105-020-00751-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
48 Haselow K, Bode JG, Wammers M, Ehlting C, Keitel V, Kleinebrecht L, Schupp AK, Häussinger D, Graf D. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J Leukoc Biol 2013;94:1253-64. [PMID: 23990628 DOI: 10.1189/jlb.0812396] [Cited by in F6Publishing: 71] [Reference Citation Analysis]
49 Phillips DP, Gao W, Yang Y, Zhang G, Lerario IK, Lau TL, Jiang J, Wang X, Nguyen DG, Bhat BG, Trotter C, Sullivan H, Welzel G, Landry J, Chen Y, Joseph SB, Li C, Gordon WP, Richmond W, Johnson K, Bretz A, Bursulaya B, Pan S, Mcnamara P, Seidel HM. Discovery of Trifluoromethyl(pyrimidin-2-yl)azetidine-2-carboxamides as Potent, Orally Bioavailable TGR5 (GPBAR1) Agonists: Structure–Activity Relationships, Lead Optimization, and Chronic In Vivo Efficacy. J Med Chem 2014;57:3263-82. [DOI: 10.1021/jm401731q] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 3.6] [Reference Citation Analysis]
50 Sonne DP, Hansen M, Knop FK. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol. 2014;171:R47-R65. [PMID: 24760535 DOI: 10.1530/eje-14-0154] [Cited by in Crossref: 41] [Cited by in F6Publishing: 22] [Article Influence: 5.1] [Reference Citation Analysis]
51 Ferrell JM, Pathak P, Boehme S, Gilliland T, Chiang JYL. Deficiency of Both Farnesoid X Receptor and Takeda G Protein-Coupled Receptor 5 Exacerbated Liver Fibrosis in Mice. Hepatology 2019;70:955-70. [PMID: 30664797 DOI: 10.1002/hep.30513] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 9.3] [Reference Citation Analysis]
52 Péan N, Doignon I, Garcin I, Besnard A, Julien B, Liu B, Branchereau S, Spraul A, Guettier C, Humbert L, Schoonjans K, Rainteau D, Tordjmann T. The receptor TGR5 protects the liver from bile acid overload during liver regeneration in mice. Hepatology 2013;58:1451-60. [PMID: 23686672 DOI: 10.1002/hep.26463] [Cited by in Crossref: 132] [Cited by in F6Publishing: 115] [Article Influence: 14.7] [Reference Citation Analysis]
53 Saikia S, Bordoloi M, Sarmah R. Established and In-trial GPCR Families in Clinical Trials: A Review for Target Selection. Curr Drug Targets 2019;20:522-39. [PMID: 30394207 DOI: 10.2174/1389450120666181105152439] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
54 Péan N, Doignon I, Tordjmann T. Bile acids and liver carcinogenesis: TGR5 as a novel piece in the puzzle? Clin Res Hepatol Gastroenterol 2013;37:226-9. [PMID: 23434440 DOI: 10.1016/j.clinre.2012.12.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
55 Karlsen TH, Schrumpf E, Boberg KM. Update on primary sclerosing cholangitis. Dig Liver Dis. 2010;42:390-400. [PMID: 20172772 DOI: 10.1016/j.dld.2010.01.011] [Cited by in Crossref: 83] [Cited by in F6Publishing: 72] [Article Influence: 6.9] [Reference Citation Analysis]
56 Deutschmann K, Reich M, Klindt C, Dröge C, Spomer L, Häussinger D, Keitel V. Bile acid receptors in the biliary tree: TGR5 in physiology and disease. Biochim Biophys Acta Mol Basis Dis 2018;1864:1319-25. [PMID: 28844960 DOI: 10.1016/j.bbadis.2017.08.021] [Cited by in Crossref: 45] [Cited by in F6Publishing: 39] [Article Influence: 9.0] [Reference Citation Analysis]
57 Wu L, Feng J, Li J, Yu Q, Ji J, Wu J, Dai W, Guo C. The gut microbiome-bile acid axis in hepatocarcinogenesis. Biomed Pharmacother 2021;133:111036. [PMID: 33378947 DOI: 10.1016/j.biopha.2020.111036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
58 Bunnett NW. Neuro-humoral signalling by bile acids and the TGR5 receptor in the gastrointestinal tract. J Physiol 2014;592:2943-50. [PMID: 24614746 DOI: 10.1113/jphysiol.2014.271155] [Cited by in Crossref: 48] [Cited by in F6Publishing: 45] [Article Influence: 6.0] [Reference Citation Analysis]
59 Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis 2014;46:302-12. [PMID: 24411485 DOI: 10.1016/j.dld.2013.10.021] [Cited by in Crossref: 229] [Cited by in F6Publishing: 216] [Article Influence: 28.6] [Reference Citation Analysis]
60 Samant H, Manatsathit W, Dies D, Shokouh-Amiri H, Zibari G, Boktor M, Alexander JS. Cholestatic liver diseases: An era of emerging therapies. World J Clin Cases 2019; 7(13): 1571-1581 [PMID: 31367616 DOI: 10.12998/wjcc.v7.i13.1571] [Cited by in CrossRef: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
61 Chiang JY, Ferrell JM. Discovery of farnesoid X receptor and its role in bile acid metabolism. Molecular and Cellular Endocrinology 2022. [DOI: 10.1016/j.mce.2022.111618] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
62 Yang H, Zhou H, Zhuang L, Auwerx J, Schoonjans K, Wang X, Feng C, Lu L. Plasma membrane-bound G protein-coupled bile acid receptor attenuates liver ischemia/reperfusion injury via the inhibition of toll-like receptor 4 signaling in mice. Liver Transpl 2017;23:63-74. [DOI: 10.1002/lt.24628] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 3.7] [Reference Citation Analysis]
63 Ullmer C, Alvarez Sanchez R, Sprecher U, Raab S, Mattei P, Dehmlow H, Sewing S, Iglesias A, Beauchamp J, Conde-Knape K. Systemic bile acid sensing by G protein-coupled bile acid receptor 1 (GPBAR1) promotes PYY and GLP-1 release. Br J Pharmacol. 2013;169:671-684. [PMID: 23488746 DOI: 10.1111/bph.12158] [Cited by in Crossref: 60] [Cited by in F6Publishing: 52] [Article Influence: 7.5] [Reference Citation Analysis]
64 Domingue JC, Ao M, Sarathy J, George A, Alrefai WA, Nelson DJ, Rao MC. HEK-293 cells expressing the cystic fibrosis transmembrane conductance regulator (CFTR): a model for studying regulation of Cl- transport. Physiol Rep 2014;2:e12158. [PMID: 25263207 DOI: 10.14814/phy2.12158] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
65 Karlsen TH, Schrumpf E, Boberg KM. Primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol 2010;24:655-66. [PMID: 20955968 DOI: 10.1016/j.bpg.2010.07.005] [Cited by in Crossref: 45] [Cited by in F6Publishing: 36] [Article Influence: 4.1] [Reference Citation Analysis]
66 Qi Y, Jiang C, Cheng J, Krausz KW, Li T, Ferrell JM, Gonzalez FJ, Chiang JY. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta. 2015;1851:19-29. [PMID: 24796972 DOI: 10.1016/j.bbalip.2014.04.008] [Cited by in Crossref: 101] [Cited by in F6Publishing: 98] [Article Influence: 12.6] [Reference Citation Analysis]
67 Holter MM, Chirikjian MK, Govani VN, Cummings BP. TGR5 Signaling in Hepatic Metabolic Health. Nutrients 2020;12:E2598. [PMID: 32859104 DOI: 10.3390/nu12092598] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
68 Bensalem A, Murtaza B, Hichami A, Khan AS, Oulamara H, Merlen G, Berrichi M, Agli AN, Tordjmann T, Khan NA. Bile acid receptor TGR5 is critically involved in preference for dietary lipids and obesity. J Nutr Biochem 2020;76:108298. [PMID: 31812910 DOI: 10.1016/j.jnutbio.2019.108298] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
69 Merlen G, Bidault‐jourdainne V, Kahale N, Glenisson M, Ursic‐bedoya J, Doignon I, Garcin I, Humbert L, Rainteau D, Tordjmann T. Hepatoprotective impact of the bile acid receptor TGR5. Liver Int 2020;40:1005-15. [DOI: 10.1111/liv.14427] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
70 Parker HE, Wallis K, le Roux CW, Wong KY, Reimann F, Gribble FM. Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br J Pharmacol. 2012;165:414-423. [PMID: 21718300 DOI: 10.1111/j.1476-5381.2011.01561.x] [Cited by in Crossref: 143] [Cited by in F6Publishing: 135] [Article Influence: 14.3] [Reference Citation Analysis]
71 Gertzen CG, Spomer L, Smits SH, Häussinger D, Keitel V, Gohlke H. Mutational mapping of the transmembrane binding site of the G-protein coupled receptor TGR5 and binding mode prediction of TGR5 agonists. Eur J Med Chem 2015;104:57-72. [PMID: 26435512 DOI: 10.1016/j.ejmech.2015.09.024] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 2.6] [Reference Citation Analysis]
72 Iwaisako K, Jiang C, Zhang M, Cong M, Moore-Morris TJ, Park TJ, Liu X, Xu J, Wang P, Paik YH, Meng F, Asagiri M, Murray LA, Hofmann AF, Iida T, Glass CK, Brenner DA, Kisseleva T. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci USA. 2014;111:E3297-E3305. [PMID: 25074909 DOI: 10.1073/pnas.1400062111] [Cited by in Crossref: 260] [Cited by in F6Publishing: 242] [Article Influence: 32.5] [Reference Citation Analysis]
73 Hillman EBM, Rijpkema S, Carson D, Arasaradnam RP, Wellington EMH, Amos GCA. Manipulating the Microbiome: An Alternative Treatment for Bile Acid Diarrhoea. Microbiology Research 2021;12:335-53. [DOI: 10.3390/microbiolres12020023] [Reference Citation Analysis]
74 Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST. Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol 2019;15:199-219. [PMID: 30733609 DOI: 10.1038/s41581-019-0116-9] [Cited by in Crossref: 176] [Cited by in F6Publishing: 153] [Article Influence: 58.7] [Reference Citation Analysis]
75 Radun R, Trauner M. Role of FXR in Bile Acid and Metabolic Homeostasis in NASH: Pathogenetic Concepts and Therapeutic Opportunities. Semin Liver Dis 2021. [PMID: 34289507 DOI: 10.1055/s-0041-1731707] [Reference Citation Analysis]
76 Merlen G, Kahale N, Ursic-Bedoya J, Bidault-Jourdainne V, Simerabet H, Doignon I, Tanfin Z, Garcin I, Péan N, Gautherot J, Davit-Spraul A, Guettier C, Humbert L, Rainteau D, Ebnet K, Ullmer C, Cassio D, Tordjmann T. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function. Gut 2020;69:146-57. [PMID: 30723104 DOI: 10.1136/gutjnl-2018-316975] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 13.5] [Reference Citation Analysis]
77 Keitel V, Häussinger D. Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol 2012;36:412-9. [PMID: 22521118 DOI: 10.1016/j.clinre.2012.03.008] [Cited by in Crossref: 76] [Cited by in F6Publishing: 76] [Article Influence: 7.6] [Reference Citation Analysis]
78 Firrincieli D, Zuniga S, Poupon R, Housset C, Chignard N. Role of nuclear receptors in the biliary epithelium. Dig Dis 2011;29:52-7. [PMID: 21691105 DOI: 10.1159/000324129] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
79 Dopico AM, Bukiya AN. Regulation of Ca2+-Sensitive K+ Channels by Cholesterol and Bile Acids via Distinct Channel Subunits and Sites. Curr Top Membr 2017;80:53-93. [PMID: 28863822 DOI: 10.1016/bs.ctm.2017.07.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.4] [Reference Citation Analysis]
80 Merlen G, Ursic-Bedoya J, Jourdainne V, Kahale N, Glenisson M, Doignon I, Rainteau D, Tordjmann T. Bile acids and their receptors during liver regeneration: "Dangerous protectors". Mol Aspects Med. 2017;56:25-33. [PMID: 28302491 DOI: 10.1016/j.mam.2017.03.002] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
81 Reich M, Deutschmann K, Sommerfeld A, Klindt C, Kluge S, Kubitz R, Ullmer C, Knoefel WT, Herebian D, Mayatepek E, Häussinger D, Keitel V. TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut 2016;65:487-501. [PMID: 26420419 DOI: 10.1136/gutjnl-2015-309458] [Cited by in Crossref: 109] [Cited by in F6Publishing: 99] [Article Influence: 18.2] [Reference Citation Analysis]
82 Li T, Holmstrom SR, Kir S, Umetani M, Schmidt DR, Kliewer SA, Mangelsdorf DJ. The G protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Mol Endocrinol. 2011;25:1066-1071. [PMID: 21454404 DOI: 10.1210/me.2010-0460] [Cited by in Crossref: 161] [Cited by in F6Publishing: 147] [Article Influence: 14.6] [Reference Citation Analysis]
83 Hov JR, Keitel V, Laerdahl JK, Spomer L, Ellinghaus E, ElSharawy A, Melum E, Boberg KM, Manke T, Balschun T, Schramm C, Bergquist A, Weismüller T, Gotthardt D, Rust C, Henckaerts L, Onnie CM, Weersma RK, Sterneck M, Teufel A, Runz H, Stiehl A, Ponsioen CY, Wijmenga C, Vatn MH, Stokkers PC, Vermeire S, Mathew CG, Lie BA, Beuers U, Manns MP, Schreiber S, Schrumpf E, Häussinger D, Franke A, Karlsen TH; IBSEN Study Group. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS One 2010;5:e12403. [PMID: 20811628 DOI: 10.1371/journal.pone.0012403] [Cited by in Crossref: 85] [Cited by in F6Publishing: 76] [Article Influence: 7.1] [Reference Citation Analysis]
84 Pols TW. TGR5 in inflammation and cardiovascular disease. Biochem Soc Trans. 2014;42:244-249. [PMID: 24646225 DOI: 10.1042/bst20130279] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
85 Brighton CA, Rievaj J, Kuhre RE, Glass LL, Schoonjans K, Holst JJ, Gribble FM, Reimann F. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors. Endocrinology 2015;156:3961-70. [PMID: 26280129 DOI: 10.1210/en.2015-1321] [Cited by in Crossref: 164] [Cited by in F6Publishing: 168] [Article Influence: 23.4] [Reference Citation Analysis]
86 Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011;54:1263-72. [PMID: 21145931 DOI: 10.1016/j.jhep.2010.12.004] [Cited by in Crossref: 227] [Cited by in F6Publishing: 222] [Article Influence: 18.9] [Reference Citation Analysis]
87 Perino A, Schoonjans K. TGR5 and Immunometabolism: Insights from Physiology and Pharmacology. Trends Pharmacol Sci. 2015;36:847-857. [PMID: 26541439 DOI: 10.1016/j.tips.2015.08.002] [Cited by in Crossref: 72] [Cited by in F6Publishing: 69] [Article Influence: 10.3] [Reference Citation Analysis]
88 Lavoie B, Balemba OB, Godfrey C, Watson CA, Vassileva G, Corvera CU, Nelson MT, Mawe GM. Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels. J Physiol. 2010;588:3295-3305. [PMID: 20624794 DOI: 10.1113/jphysiol.2010.192146] [Cited by in Crossref: 89] [Cited by in F6Publishing: 76] [Article Influence: 7.4] [Reference Citation Analysis]
89 Zanlungo S, Rigotti A, Miquel JF, Nervi F. Abnormalities of lipid metabolism, gallstone disease and gallbladder function. Clinical Lipidology 2011;6:315-25. [DOI: 10.2217/clp.11.22] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
90 Biagioli M, Fiorucci S. Bile acid activated receptors: Integrating immune and metabolic regulation in non-alcoholic fatty liver disease. Liver Research 2021;5:119-41. [DOI: 10.1016/j.livres.2021.08.003] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Baghdasaryan A, Fuchs CD, Österreicher CH, Lemberger UJ, Halilbasic E, Påhlman I, Graffner H, Krones E, Fickert P, Wahlström A, Ståhlman M, Paumgartner G, Marschall HU, Trauner M. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. J Hepatol 2016;64:674-81. [PMID: 26529078 DOI: 10.1016/j.jhep.2015.10.024] [Cited by in Crossref: 82] [Cited by in F6Publishing: 78] [Article Influence: 11.7] [Reference Citation Analysis]
92 Donepudi AC, Boehme S, Li F, Chiang JY. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice. Hepatology 2017;65:813-27. [PMID: 27351453 DOI: 10.1002/hep.28707] [Cited by in Crossref: 79] [Cited by in F6Publishing: 71] [Article Influence: 15.8] [Reference Citation Analysis]
93 Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig Dis. 2011;29:37-44. [PMID: 21691102 DOI: 10.1159/000324126] [Cited by in Crossref: 74] [Cited by in F6Publishing: 72] [Article Influence: 6.7] [Reference Citation Analysis]
94 Copple BL, Li T. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res. 2016;104:9-21. [PMID: 26706784 DOI: 10.1016/j.phrs.2015.12.007] [Cited by in Crossref: 110] [Cited by in F6Publishing: 98] [Article Influence: 15.7] [Reference Citation Analysis]
95 Keitel V, Reich M, Häussinger D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis? Clin Rev Allergy Immunol 2015;48:218-25. [PMID: 25138774 DOI: 10.1007/s12016-014-8443-x] [Cited by in F6Publishing: 28] [Reference Citation Analysis]
96 Wang X, Fu X, Van Ness C, Meng Z, Ma X, Huang W. Bile Acid Receptors and Liver Cancer. Curr Pathobiol Rep 2013;1:29-35. [PMID: 23420103 DOI: 10.1007/s40139-012-0003-6] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 4.6] [Reference Citation Analysis]
97 Baiocchi L, Zhou T, Liangpunsakul S, Lenci I, Santopaolo F, Meng F, Kennedy L, Glaser S, Francis H, Alpini G. Dual Role of Bile Acids on the Biliary Epithelium: Friend or Foe? Int J Mol Sci 2019;20:E1869. [PMID: 31014010 DOI: 10.3390/ijms20081869] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
98 Keitel V, Görg B, Bidmon HJ, Zemtsova I, Spomer L, Zilles K, Häussinger D. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia. 2010;58:1794-1805. [PMID: 20665558 DOI: 10.1002/glia.21049] [Cited by in Crossref: 141] [Cited by in F6Publishing: 127] [Article Influence: 12.8] [Reference Citation Analysis]
99 Karlsen TH, Hov JR. Genetics of cholestatic liver disease in 2010. Curr Opin Gastroenterol 2010;26:251-8. [PMID: 20042859 DOI: 10.1097/MOG.0b013e328336807d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
100 Gether IM, Nexøe-Larsen C, Knop FK. New Avenues in the Regulation of Gallbladder Motility-Implications for the Use of Glucagon-Like Peptide-Derived Drugs. J Clin Endocrinol Metab 2019;104:2463-72. [PMID: 30137354 DOI: 10.1210/jc.2018-01008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
101 Roda A, Pellicciari R, Gioiello A, Neri F, Camborata C, Passeri D, De Franco F, Spinozzi S, Colliva C, Adorini L, Montagnani M, Aldini R. Semisynthetic Bile Acid FXR and TGR5 Agonists: Physicochemical Properties, Pharmacokinetics, and Metabolism in the Rat. J Pharmacol Exp Ther 2014;350:56-68. [DOI: 10.1124/jpet.114.214650] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 4.6] [Reference Citation Analysis]
102 Morimoto K, Watanabe M, Sugizaki T, Irie J, Itoh H. Intestinal Bile Acid Composition Modulates Prohormone Convertase 1/3 (PC1/3) Expression and Consequent GLP-1 Production in Male Mice. Endocrinology 2016;157:1071-81. [PMID: 26789236 DOI: 10.1210/en.2015-1551] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
103 Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, Pelayo JC, Bunnett NW, Corvera CU. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil. 2010;22:814-825, e227-228. [PMID: 20236244 DOI: 10.1111/j.1365-2982.2010.01487.x] [Cited by in Crossref: 137] [Cited by in F6Publishing: 136] [Article Influence: 11.4] [Reference Citation Analysis]
104 Masyuk TV, Masyuk AI, LaRusso NF. TGR5 in the Cholangiociliopathies. Dig Dis 2015;33:420-5. [PMID: 26045278 DOI: 10.1159/000371696] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
105 Gimeno RE, Briere DA, Seeley RJ. Leveraging the Gut to Treat Metabolic Disease. Cell Metab 2020;31:679-98. [PMID: 32187525 DOI: 10.1016/j.cmet.2020.02.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
106 Hageman J, Herrema H, Groen AK, Kuipers F. A role of the bile salt receptor FXR in atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:1519-1528. [PMID: 20631352 DOI: 10.1161/atvbaha.109.197897] [Cited by in Crossref: 62] [Cited by in F6Publishing: 31] [Article Influence: 5.2] [Reference Citation Analysis]
107 Fiorucci S, Zampella A, Ricci P, Distrutti E, Biagioli M. Immunomodulatory functions of FXR. Mol Cell Endocrinol 2022;551:111650. [PMID: 35472625 DOI: 10.1016/j.mce.2022.111650] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Hirschfield GM. Genetic Determinants of Cholestasis. Clinics in Liver Disease 2013;17:147-59. [DOI: 10.1016/j.cld.2012.12.002] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 1.8] [Reference Citation Analysis]
109 Marasco G, Cremon C, Barbaro MR, Falangone F, Montanari D, Capuani F, Mastel G, Stanghellini V, Barbara G. Pathophysiology and Clinical Management of Bile Acid Diarrhea. JCM 2022;11:3102. [DOI: 10.3390/jcm11113102] [Reference Citation Analysis]
110 Rizzo G, Passeri D, De Franco F, Ciaccioli G, Donadio L, Rizzo G, Orlandi S, Sadeghpour B, Wang XX, Jiang T, Levi M, Pruzanski M, Adorini L. Functional characterization of the semisynthetic bile acid derivative INT-767, a dual farnesoid X receptor and TGR5 agonist. Mol Pharmacol. 2010;78:617-630. [PMID: 20631053 DOI: 10.1124/mol.110.064501] [Cited by in Crossref: 118] [Cited by in F6Publishing: 117] [Article Influence: 9.8] [Reference Citation Analysis]
111 Domingue JC, Ao M, Sarathy J, Rao MC. Chenodeoxycholic acid requires activation of EGFR, EPAC, and Ca2+ to stimulate CFTR-dependent Cl- secretion in human colonic T84 cells. Am J Physiol Cell Physiol 2016;311:C777-92. [PMID: 27558159 DOI: 10.1152/ajpcell.00168.2016] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
112 Lasalle M, Hoguet V, Hennuyer N, Leroux F, Piveteau C, Belloy L, Lestavel S, Vallez E, Dorchies E, Duplan I, Sevin E, Culot M, Gosselet F, Boulahjar R, Herledan A, Staels B, Deprez B, Tailleux A, Charton J. Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon Like Peptide-1 Secretion and Improve Glucose Tolerance. J Med Chem 2017;60:4185-211. [PMID: 28414465 DOI: 10.1021/acs.jmedchem.6b01873] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
113 Doden HL, Ridlon JM. Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega. Microorganisms 2021;9:469. [PMID: 33668351 DOI: 10.3390/microorganisms9030469] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
114 Zwartjes MSZ, Gerdes VEA, Nieuwdorp M. The Role of Gut Microbiota and Its Produced Metabolites in Obesity, Dyslipidemia, Adipocyte Dysfunction, and Its Interventions. Metabolites 2021;11:531. [PMID: 34436472 DOI: 10.3390/metabo11080531] [Reference Citation Analysis]
115 Keitel V, Gertzen CGW, Schäfer S, Klindt C, Wöhler C, Deutschmann K, Reich M, Gohlke H, Häussinger D. Bile Acids and TGR5 (Gpbar1) Signaling. In: Rozman D, Gebhardt R, editors. Mammalian Sterols. Cham: Springer International Publishing; 2020. pp. 81-100. [DOI: 10.1007/978-3-030-39684-8_4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
116 Keitel V, Stindt J, Häussinger D. Bile Acid-Activated Receptors: GPBAR1 (TGR5) and Other G Protein-Coupled Receptors. Handb Exp Pharmacol 2019;256:19-49. [PMID: 31302759 DOI: 10.1007/164_2019_230] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 9.3] [Reference Citation Analysis]
117 Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CE, Gómez-Lechón MJ, Groothuis GM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EH, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013;87:1315-530. [PMID: 23974980 DOI: 10.1007/s00204-013-1078-5] [Cited by in Crossref: 751] [Cited by in F6Publishing: 687] [Article Influence: 83.4] [Reference Citation Analysis]
118 Cortés VA, Barrera F, Nervi F. Pathophysiological connections between gallstone disease, insulin resistance, and obesity. Obes Rev 2020;21:e12983. [PMID: 31814283 DOI: 10.1111/obr.12983] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
119 Marin JJ, Lozano E, Perez MJ. Lack of mitochondrial DNA impairs chemical hypoxia-induced autophagy in liver tumor cells through ROS-AMPK-ULK1 signaling dysregulation independently of HIF-1α. Free Radical Biology and Medicine 2016;101:71-84. [DOI: 10.1016/j.freeradbiomed.2016.09.025] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
120 Bajor A, Gillberg PG, Abrahamsson H. Bile acids: short and long term effects in the intestine. Scand J Gastroenterol. 2010;45:645-664. [PMID: 20334475 DOI: 10.3109/00365521003702734] [Cited by in Crossref: 80] [Cited by in F6Publishing: 75] [Article Influence: 6.7] [Reference Citation Analysis]
121 Porez G, Prawitt J, Gross B, Staels B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res. 2012;53:1723-1737. [PMID: 22550135 DOI: 10.1194/jlr.r024794] [Cited by in Crossref: 188] [Cited by in F6Publishing: 91] [Article Influence: 18.8] [Reference Citation Analysis]
122 Zhou H, Zhou S, Gao J, Zhang G, Lu Y, Owyang C. Upregulation of bile acid receptor TGR5 and nNOS in gastric myenteric plexus is responsible for delayed gastric emptying after chronic high-fat feeding in rats. Am J Physiol Gastrointest Liver Physiol 2015;308:G863-73. [PMID: 25540233 DOI: 10.1152/ajpgi.00380.2014] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 1.4] [Reference Citation Analysis]
123 Hov JR, Keitel V, Schrumpf E, Häussinger D, Karlsen TH. TGR5 sequence variation in primary sclerosing cholangitis. Dig Dis 2011;29:78-84. [PMID: 21691110 DOI: 10.1159/000324138] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 1.9] [Reference Citation Analysis]
124 Masyuk AI, Huang BQ, Radtke BN, Gajdos GB, Splinter PL, Masyuk TV, Gradilone SA, LaRusso NF. Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. Am J Physiol Gastrointest Liver Physiol 2013;304:G1013-24. [PMID: 23578785 DOI: 10.1152/ajpgi.00383.2012] [Cited by in Crossref: 89] [Cited by in F6Publishing: 72] [Article Influence: 9.9] [Reference Citation Analysis]
125 Carino A, Marchianò S, Biagioli M, Scarpelli P, Bordoni M, Di Giorgio C, Roselli R, Fiorucci C, Monti MC, Distrutti E, Zampella A, Fiorucci S. The bile acid activated receptors GPBAR1 and FXR exert antagonistic effects on autophagy. FASEB j 2021;35. [DOI: 10.1096/fj.202001386r] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
126 Spomer L, Gertzen CG, Schmitz B, Häussinger D, Gohlke H, Keitel V. A membrane-proximal, C-terminal α-helix is required for plasma membrane localization and function of the G Protein-coupled receptor (GPCR) TGR5. J Biol Chem 2014;289:3689-702. [PMID: 24338481 DOI: 10.1074/jbc.M113.502344] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
127 Claro da Silva T, Polli JE, Swaan PW. The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med 2013;34:252-69. [PMID: 23506869 DOI: 10.1016/j.mam.2012.07.004] [Cited by in Crossref: 90] [Cited by in F6Publishing: 85] [Article Influence: 10.0] [Reference Citation Analysis]
128 Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. COC 2019;23:2016-101. [DOI: 10.2174/1385272823666191014154129] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
129 Briere DA, Ruan X, Cheng CC, Siesky AM, Fitch TE, Dominguez C, Sanfeliciano SG, Montero C, Suen CS, Xu Y, Coskun T, Michael MD. Novel Small Molecule Agonist of TGR5 Possesses Anti-Diabetic Effects but Causes Gallbladder Filling in Mice. PLoS One 2015;10:e0136873. [PMID: 26312995 DOI: 10.1371/journal.pone.0136873] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 5.6] [Reference Citation Analysis]
130 Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol. 2014;11:55-67. [PMID: 23982684 DOI: 10.1038/nrgastro.2013.151] [Cited by in Crossref: 423] [Cited by in F6Publishing: 376] [Article Influence: 47.0] [Reference Citation Analysis]
131 Ghallab A. TGR5 regulates portal perfusion pressure of the liver. EXCLI J 2019;18:1107-8. [PMID: 31938032 DOI: 10.17179/excli2019-2077] [Reference Citation Analysis]
132 Mobraten K, Haugbro T, Karlstrom E, Kleiveland CR, Lea T. Activation of the bile acid receptor TGR5 enhances LPS-induced inflammatory responses in a human monocytic cell line. J Recept Signal Transduct Res 2015;35:402-9. [PMID: 25418122 DOI: 10.3109/10799893.2014.986744] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 2.5] [Reference Citation Analysis]
133 Yoneno K, Hisamatsu T, Shimamura K, Kamada N, Ichikawa R, Kitazume MT, Mori M, Uo M, Namikawa Y, Matsuoka K, Sato T, Koganei K, Sugita A, Kanai T, Hibi T. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology. 2013;139:19-29. [PMID: 23566200 DOI: 10.1111/imm.12045] [Cited by in Crossref: 94] [Cited by in F6Publishing: 91] [Article Influence: 10.4] [Reference Citation Analysis]
134 Hirschfield GM, Heathcote EJ, Gershwin ME. Pathogenesis of cholestatic liver disease and therapeutic approaches. Gastroenterology. 2010;139:1481-1496. [PMID: 20849855 DOI: 10.1053/j.gastro.2010.09.004] [Cited by in Crossref: 167] [Cited by in F6Publishing: 152] [Article Influence: 13.9] [Reference Citation Analysis]
135 Pols TW, Nomura M, Harach T, Lo Sasso G, Oosterveer MH, Thomas C, Rizzo G, Gioiello A, Adorini L, Pellicciari R, Auwerx J, Schoonjans K. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 2011;14:747-757. [PMID: 22152303 DOI: 10.1016/j.cmet.2011.11.006] [Cited by in Crossref: 303] [Cited by in F6Publishing: 286] [Article Influence: 30.3] [Reference Citation Analysis]
136 Keitel V, Häussinger D. TGR5 in the biliary tree. Dig Dis 2011;29:45-7. [PMID: 21691103 DOI: 10.1159/000324127] [Cited by in Crossref: 37] [Cited by in F6Publishing: 34] [Article Influence: 3.4] [Reference Citation Analysis]
137 Wäschenbach L, Gertzen CGW, Keitel V, Gohlke H. Dimerization energetics of the G-protein coupled bile acid receptor TGR5 from all-atom simulations. J Comput Chem 2020;41:874-84. [PMID: 31880348 DOI: 10.1002/jcc.26135] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
138 Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. Curr Top Membr. 2012;70:105-168. [PMID: 23177985 DOI: 10.1016/b978-0-12-394316-3.00004-1] [Cited by in Crossref: 74] [Cited by in F6Publishing: 41] [Article Influence: 8.2] [Reference Citation Analysis]
139 McMahan RH, Wang XX, Cheng LL, Krisko T, Smith M, El Kasmi K, Pruzanski M, Adorini L, Golden-Mason L, Levi M, Rosen HR. Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem. 2013;288:11761-11770. [PMID: 23460643 DOI: 10.1074/jbc.m112.446575] [Cited by in Crossref: 137] [Cited by in F6Publishing: 74] [Article Influence: 15.2] [Reference Citation Analysis]
140 Zheng Z, Wang B. The Gut-Liver Axis in Health and Disease: The Role of Gut Microbiota-Derived Signals in Liver Injury and Regeneration. Front Immunol 2021;12:775526. [PMID: 34956204 DOI: 10.3389/fimmu.2021.775526] [Reference Citation Analysis]
141 Housset C, Chrétien Y, Debray D, Chignard N. Functions of the Gallbladder. Compr Physiol 2016;6:1549-77. [PMID: 27347902 DOI: 10.1002/cphy.c150050] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 7.7] [Reference Citation Analysis]
142 Stepanov V, Stankov K, Mikov M. The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders. J Recept Signal Transduct Res. 2013;33:213-223. [PMID: 23782454 DOI: 10.3109/10799893.2013.802805] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 5.3] [Reference Citation Analysis]
143 Wang XY, Zhang SY, Li J, Liu HN, Xie X, Nan FJ. Highly lipophilic 3-epi-betulinic acid derivatives as potent and selective TGR5 agonists with improved cellular efficacy. Acta Pharmacol Sin 2014;35:1463-72. [PMID: 25283506 DOI: 10.1038/aps.2014.97] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 1.1] [Reference Citation Analysis]
144 Bidault-Jourdainne V, Merlen G, Glénisson M, Doignon I, Garcin I, Péan N, Boisgard R, Ursic-Bedoya J, Serino M, Ullmer C, Humbert L, Abdelrafee A, Golse N, Vibert E, Duclos-Vallée JC, Rainteau D, Tordjmann T. TGR5 controls bile acid composition and gallbladder function to protect the liver from bile acid overload. JHEP Rep 2021;3:100214. [PMID: 33604531 DOI: 10.1016/j.jhepr.2020.100214] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
145 Shen H, Ding L, Baig M, Tian J, Wang Y, Huang W. Improving glucose and lipids metabolism: drug development based on bile acid related targets. Cell Stress 2021;5:1-18. [PMID: 33447732 DOI: 10.15698/cst2021.01.239] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
146 Jensen DD, Godfrey CB, Niklas C, Canals M, Kocan M, Poole DP, Murphy JE, Alemi F, Cottrell GS, Korbmacher C, Lambert NA, Bunnett NW, Corvera CU. The bile acid receptor TGR5 does not interact with β-arrestins or traffic to endosomes but transmits sustained signals from plasma membrane rafts. J Biol Chem 2013;288:22942-60. [PMID: 23818521 DOI: 10.1074/jbc.M113.455774] [Cited by in Crossref: 67] [Cited by in F6Publishing: 41] [Article Influence: 7.4] [Reference Citation Analysis]
147 Harach T, Pols TW, Nomura M, Maida A, Watanabe M, Auwerx J, Schoonjans K. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep. 2012;2:430. [PMID: 22666533 DOI: 10.1038/srep00430] [Cited by in Crossref: 110] [Cited by in F6Publishing: 108] [Article Influence: 11.0] [Reference Citation Analysis]
148 Ali AH, Tabibian JH, Carey EJ, Lindor KD. Emerging drugs for the treatment of Primary Biliary Cholangitis. Expert Opin Emerg Drugs 2016;21:39-56. [PMID: 26901615 DOI: 10.1517/14728214.2016.1150999] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
149 Zimmer V, Lammert F. Role of genetics in diagnosis and therapy of acquired liver disease. Molecular Aspects of Medicine 2014;37:15-34. [DOI: 10.1016/j.mam.2013.10.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
150 Fuentes J, Ribeiro L, Aragão C. Bile salts regulate ion transport in the intestine of Senegalese sole. Aquaculture 2018;495:842-8. [DOI: 10.1016/j.aquaculture.2018.06.050] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
151 Quante M, Iske J, Uehara H, Minami K, Nian Y, Maenosono R, Matsunaga T, Liu Y, Azuma H, Perkins D, Alegre ML, Zhou H, Elkhal A, Tullius SG. Taurodeoxycholic acid and valine reverse obesity-associated augmented alloimmune responses and prolong allograft survival. Am J Transplant 2021. [PMID: 34551205 DOI: 10.1111/ajt.16856] [Reference Citation Analysis]
152 Reich M, Spomer L, Klindt C, Fuchs K, Stindt J, Deutschmann K, Höhne J, Liaskou E, Hov JR, Karlsen TH, Beuers U, Verheij J, Ferreira-Gonzalez S, Hirschfield G, Forbes SJ, Schramm C, Esposito I, Nierhoff D, Fickert P, Fuchs CD, Trauner M, García-Beccaria M, Gabernet G, Nahnsen S, Mallm JP, Vogel M, Schoonjans K, Lautwein T, Köhrer K, Häussinger D, Luedde T, Heikenwalder M, Keitel V. Downregulation of TGR5 (GPBAR1) in biliary epithelial cells contributes to the pathogenesis of sclerosing cholangitis. J Hepatol 2021;75:634-46. [PMID: 33872692 DOI: 10.1016/j.jhep.2021.03.029] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
153 Li X, DiFiglia M. The recycling endosome and its role in neurological disorders. Prog Neurobiol 2012;97:127-41. [PMID: 22037413 DOI: 10.1016/j.pneurobio.2011.10.002] [Cited by in Crossref: 44] [Cited by in F6Publishing: 46] [Article Influence: 4.0] [Reference Citation Analysis]
154 Xu Y. Recent Progress on Bile Acid Receptor Modulators for Treatment of Metabolic Diseases. J Med Chem 2016;59:6553-79. [DOI: 10.1021/acs.jmedchem.5b00342] [Cited by in Crossref: 49] [Cited by in F6Publishing: 43] [Article Influence: 8.2] [Reference Citation Analysis]
155 Keitel V, Spomer L, Marin J, Williamson C, Geenes V, Kubitz R, Häussinger D, Macias R. Effect of maternal cholestasis on TGR5 expression in human and rat placenta at term. Placenta 2013;34:810-6. [DOI: 10.1016/j.placenta.2013.06.302] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 1.9] [Reference Citation Analysis]
156 Kida T, Tsubosaka Y, Hori M, Ozaki H, Murata T. Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2013;33:1663-1669. [PMID: 23619297 DOI: 10.1161/atvbaha.113.301565] [Cited by in Crossref: 68] [Cited by in F6Publishing: 34] [Article Influence: 7.6] [Reference Citation Analysis]
157 Yang H, Luo F, Wei Y, Jiao Y, Qian J, Chen S, Gong Y, Tang L. TGR5 protects against cholestatic liver disease via suppressing the NF-κB pathway and activating the Nrf2/HO-1 pathway. Ann Transl Med 2021;9:1158. [PMID: 34430599 DOI: 10.21037/atm-21-2631] [Reference Citation Analysis]
158 Marchianò S, Biagioli M, Roselli R, Zampella A, Di Giorgio C, Bordoni M, Bellini R, Morretta E, Monti MC, Distrutti E, Fiorucci S. Atorvastatin protects against liver and vascular damage in a model of diet induced steatohepatitis by resetting FXR and GPBAR1 signaling. FASEB J 2022;36:e22060. [PMID: 34862975 DOI: 10.1096/fj.202101397R] [Reference Citation Analysis]
159 Chen X, Lou G, Meng Z, Huang W. TGR5: a novel target for weight maintenance and glucose metabolism. Exp Diabetes Res 2011;2011:853501. [PMID: 21754919 DOI: 10.1155/2011/853501] [Cited by in Crossref: 55] [Cited by in F6Publishing: 59] [Article Influence: 5.0] [Reference Citation Analysis]
160 McGlone ER, Bloom SR. Bile acids and the metabolic syndrome. Ann Clin Biochem 2019;56:326-37. [PMID: 30453753 DOI: 10.1177/0004563218817798] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
161 Trauner M, Fuchs CD, Halilbasic E, Paumgartner G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 2017;65:1393-404. [PMID: 27997980 DOI: 10.1002/hep.28991] [Cited by in Crossref: 115] [Cited by in F6Publishing: 102] [Article Influence: 23.0] [Reference Citation Analysis]
162 Kaur I, Tiwari R, Naidu V, Ramakrishna S, Tripathi DM, Kaur S. Bile Acids as Metabolic Inducers of Hepatocyte Proliferation and Liver Regeneration. Regen Eng Transl Med . [DOI: 10.1007/s40883-021-00221-2] [Reference Citation Analysis]
163 Wu X, Li JY, Lee A, Lu YX, Zhou SY, Owyang C. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight 2020;5:132400. [PMID: 32699194 DOI: 10.1172/jci.insight.132400] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
164 Keitel V, Ullmer C, Häussinger D. The membrane-bound bile acid receptor TGR5 (Gpbar-1) is localized in the primary cilium of cholangiocytes. Biol Chem. 2010;391:785-789. [PMID: 20623999 DOI: 10.1515/bc.2010.077] [Cited by in Crossref: 83] [Cited by in F6Publishing: 77] [Article Influence: 7.5] [Reference Citation Analysis]
165 Klaassen CD, Cui JY. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids. Drug Metab Dispos 2015;43:1505-21. [PMID: 26261286 DOI: 10.1124/dmd.115.065698] [Cited by in Crossref: 103] [Cited by in F6Publishing: 96] [Article Influence: 14.7] [Reference Citation Analysis]
166 Ji CG, Xie XL, Yin J, Qi W, Chen L, Bai Y, Wang N, Zhao DQ, Jiang XY, Jiang HQ. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice. Transl Res 2017;182:88-102. [PMID: 28034761 DOI: 10.1016/j.trsl.2016.12.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
167 Erlinger S. Chronic fibrosing cholangiopathies: a consequence of a defective HCO₃⁻ "umbrella"? Clin Res Hepatol Gastroenterol 2011;35:85-8. [PMID: 21809484 DOI: 10.1016/j.clinre.2010.10.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
168 Beuers U, Trauner M, Jansen P, Poupon R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol. 2015;62:S25-S37. [PMID: 25920087 DOI: 10.1016/j.jhep.2015.02.023] [Cited by in Crossref: 250] [Cited by in F6Publishing: 222] [Article Influence: 41.7] [Reference Citation Analysis]
169 Hunt JE, Billeschou A, Windeløv JA, Hartmann B, Ullmer C, Holst JJ, Kissow H. Pharmacological activation of TGR5 promotes intestinal growth via a GLP-2-dependent pathway in mice. Am J Physiol Gastrointest Liver Physiol 2020;318:G980-7. [PMID: 32308039 DOI: 10.1152/ajpgi.00062.2020] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
170 Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 2014;66:948-83. [PMID: 25073467 DOI: 10.1124/pr.113.008201] [Cited by in Crossref: 402] [Cited by in F6Publishing: 380] [Article Influence: 57.4] [Reference Citation Analysis]
171 Ferrell JM, Chiang JYL. Understanding Bile Acid Signaling in Diabetes: From Pathophysiology to Therapeutic Targets. Diabetes Metab J 2019;43:257-72. [PMID: 31210034 DOI: 10.4093/dmj.2019.0043] [Cited by in Crossref: 43] [Cited by in F6Publishing: 34] [Article Influence: 21.5] [Reference Citation Analysis]
172 Bowlus CL. Cutting edge issues in primary sclerosing cholangitis. Clin Rev Allergy Immunol 2011;41:139-50. [PMID: 21170605 DOI: 10.1007/s12016-010-8221-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
173 Tonack S, Tang C, Offermanns S. Endogenous metabolites as ligands for G protein-coupled receptors modulating risk factors for metabolic and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013;304:H501-13. [PMID: 23241321 DOI: 10.1152/ajpheart.00641.2012] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.9] [Reference Citation Analysis]
174 Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium. J Immunol 2013;190:3354-62. [PMID: 23436935 DOI: 10.4049/jimmunol.1202960] [Cited by in Crossref: 72] [Cited by in F6Publishing: 71] [Article Influence: 8.0] [Reference Citation Analysis]
175 Habib AM, Richards P, Rogers GJ, Reimann F, Gribble FM. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia. 2013;56:1413-1416. [PMID: 23519462 DOI: 10.1007/s00125-013-2887-z] [Cited by in Crossref: 108] [Cited by in F6Publishing: 111] [Article Influence: 12.0] [Reference Citation Analysis]
176 Mroz MS, Harvey BJ. Ursodeoxycholic acid inhibits ENaC and Na/K pump activity to restore airway surface liquid height in cystic fibrosis bronchial epithelial cells. Steroids 2019;151:108461. [PMID: 31344409 DOI: 10.1016/j.steroids.2019.108461] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 2.3] [Reference Citation Analysis]
177 Hegyi P, Maléth J, Walters JR, Hofmann AF, Keely SJ. Guts and Gall: Bile Acids in Regulation of Intestinal Epithelial Function in Health and Disease. Physiol Rev 2018;98:1983-2023. [PMID: 30067158 DOI: 10.1152/physrev.00054.2017] [Cited by in Crossref: 81] [Cited by in F6Publishing: 76] [Article Influence: 27.0] [Reference Citation Analysis]
178 Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021;82:101094. [PMID: 33636214 DOI: 10.1016/j.plipres.2021.101094] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
179 Chen Y, Wu S, Tian Y. Cholecystectomy as a risk factor of metabolic syndrome: from epidemiologic clues to biochemical mechanisms. Lab Invest 2018;98:7-14. [PMID: 28892095 DOI: 10.1038/labinvest.2017.95] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
180 Portincasa P, Di Ciaula A, Garruti G, Vacca M, De Angelis M, Wang DQ. Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microbiome. Nutrients 2020;12:E3709. [PMID: 33266235 DOI: 10.3390/nu12123709] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 6.5] [Reference Citation Analysis]
181 Wang Q, Wei S, Li L, Qiu J, Zhou S, Shi C, Shi Y, Zhou H, Lu L. TGR5 deficiency aggravates hepatic ischemic/reperfusion injury via inhibiting SIRT3/FOXO3/HIF-1ɑ pathway. Cell Death Discov 2020;6:116. [PMID: 33298860 DOI: 10.1038/s41420-020-00347-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
182 Chiang JYL. Bile Acid Metabolism. In: Monga SPS, editor. Molecular Pathology of Liver Diseases. Boston: Springer US; 2011. pp. 165-79. [DOI: 10.1007/978-1-4419-7107-4_12] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
183 Gioiello A, Rosatelli E, Nuti R, Macchiarulo A, Pellicciari R. Patented TGR5 modulators: a review (2006 - present). Expert Opin Ther Pat 2012;22:1399-414. [PMID: 23039746 DOI: 10.1517/13543776.2012.733000] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 3.5] [Reference Citation Analysis]
184 Dawson PA. Bile Formation and the Enterohepatic Circulation. Physiology of the Gastrointestinal Tract. Elsevier; 2012. pp. 1461-84. [DOI: 10.1016/b978-0-12-382026-6.00053-1] [Cited by in Crossref: 7] [Article Influence: 0.7] [Reference Citation Analysis]
185 Sun R, Xu C, Feng B, Gao X, Liu Z. Critical roles of bile acids in regulating intestinal mucosal immune responses. Therap Adv Gastroenterol 2021;14:17562848211018098. [PMID: 34104213 DOI: 10.1177/17562848211018098] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]