BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shukla D, Mandal PK, Tripathi M, Vishwakarma G, Mishra R, Sandal K. Quantitation of in vivo brain glutathione conformers in cingulate cortex among age-matched control, MCI, and AD patients using MEGA-PRESS. Hum Brain Mapp 2020;41:194-217. [PMID: 31584232 DOI: 10.1002/hbm.24799] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Sharma S, Mandal PK. A Comprehensive Report on Machine Learning-based Early Detection of Alzheimer's Disease using Multi-modal Neuroimaging Data. ACM Comput Surv 2023;55:1-44. [DOI: 10.1145/3492865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Abdelhamid RF, Nagano S. Crosstalk between Oxidative Stress and Aging in Neurodegeneration Disorders. Cells 2023;12. [PMID: 36899889 DOI: 10.3390/cells12050753] [Reference Citation Analysis]
3 Kara B, Gordon MN, Gifani M, Dorrance AM, Counts SE. Vascular and Nonvascular Mechanisms of Cognitive Impairment and Dementia. Clin Geriatr Med 2023;39:109-22. [PMID: 36404024 DOI: 10.1016/j.cger.2022.07.006] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Mandal PK, Guha Roy R, Kalyani A. Distribution Pattern of Closed and Extended Forms of Glutathione in the Human Brain: MR Spectroscopic Study. ACS Chem Neurosci 2023;14:270-6. [PMID: 36595311 DOI: 10.1021/acschemneuro.2c00573] [Reference Citation Analysis]
5 Matsuoka K, Takado Y, Tagai K, Kubota M, Sano Y, Takahata K, Ono M, Seki C, Matsumoto H, Endo H, Shinotoh H, Sahara Y, Obata T, Near J, Kawamura K, Zhang MR, Suhara T, Shimada H, Higuchi M. Two pathways differentially linking tau depositions, oxidative stress, and neuronal loss to apathetic phenotypes in progressive supranuclear palsy. J Neurol Sci 2023;444:120514. [PMID: 36473346 DOI: 10.1016/j.jns.2022.120514] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Alqahtani MS, Abbas M, Alshahrani MY, Alabdullh K, Alqarni A, Alqahtani FF, Jambi LK, Alkhayat A. Effects of COVID-19 on Synaptic and Neuronal Degeneration. Brain Sci 2023;13. [PMID: 36672112 DOI: 10.3390/brainsci13010131] [Reference Citation Analysis]
7 de Natale ER, Wilson H, Udeh-momoh C, Ford JK, Politis M, Middleton LT. How molecular imaging studies can disentangle disease mechanisms in age-related neurodegenerative disorders. Aging 2023. [DOI: 10.1016/b978-0-12-823761-8.00022-7] [Reference Citation Analysis]
8 Qiao L, Chen Y, Dou X, Song X, Xu C. Biogenic Selenium Nanoparticles Attenuate Aβ(25-35)-Induced Toxicity in PC12 Cells via Akt/CREB/BDNF Signaling Pathway. Neurotox Res 2022;40:1869-81. [PMID: 36435923 DOI: 10.1007/s12640-022-00590-8] [Reference Citation Analysis]
9 Yang S, Wang J, Cheng P, Chen L, Hu J, Zhu G. Ginsenoside Rg1 in neurological diseases: From bench to bedside. Acta Pharmacol Sin 2022. [DOI: 10.1038/s41401-022-01022-1] [Reference Citation Analysis]
10 Qiao L, Chen Y, Song X, Dou X, Xu C. Selenium Nanoparticles-Enriched Lactobacillus casei ATCC 393 Prevents Cognitive Dysfunction in Mice Through Modulating Microbiota-Gut-Brain Axis. Int J Nanomedicine 2022;17:4807-27. [PMID: 36246933 DOI: 10.2147/IJN.S374024] [Reference Citation Analysis]
11 Novelli A, Bianchetti A. Glutathione: pharmacological aspects and implications for clinical use. Geriatr Care 2022;8. [DOI: 10.4081/gc.2022.10390] [Reference Citation Analysis]
12 Mandal PK, Goel A, Bush AI, Punjabi K, Joon S, Mishra R, Tripathi M, Garg A, Kumar NK, Sharma P, Shukla D, Ayton SJ, Fazlollahi A, Maroon JC, Dwivedi D, Samkaria A, Sandal K, Megha K, Shandilya S. Hippocampal glutathione depletion with enhanced iron level in patients with mild cognitive impairment and Alzheimer’s disease compared with healthy elderly participants. Brain Communications 2022;4. [DOI: 10.1093/braincomms/fcac215] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Wang XJ, Qi L, Cheng YF, Ji XF, Chi TY, Liu P, Zou LB. PINK1 overexpression prevents forskolin-induced tau hyperphosphorylation and oxidative stress in a rat model of Alzheimer's disease. Acta Pharmacol Sin 2022;43:1916-27. [PMID: 34893682 DOI: 10.1038/s41401-021-00810-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 Prasuhn J, Kunert L, Brüggemann N. Neuroimaging Methods to Map In Vivo Changes of OXPHOS and Oxidative Stress in Neurodegenerative Disorders. IJMS 2022;23:7263. [DOI: 10.3390/ijms23137263] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Nabi SU, Khan A, Siddiqui EM, Rehman MU, Alshahrani S, Arafah A, Mehan S, Alsaffar RM, Alexiou A, Shen B, Ciobica A. Mechanisms of Mitochondrial Malfunction in Alzheimer’s Disease: New Therapeutic Hope. Oxidative Medicine and Cellular Longevity 2022;2022:1-28. [DOI: 10.1155/2022/4759963] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
16 Mao X, Calero-Pérez P, Montpeyó D, Bruna J, Yuste VJ, Candiota AP, Lorenzo J, Novio F, Ruiz-Molina D. Intranasal Administration of Catechol-Based Pt(IV) Coordination Polymer Nanoparticles for Glioblastoma Therapy. Nanomaterials (Basel) 2022;12:1221. [PMID: 35407338 DOI: 10.3390/nano12071221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Maciejczyk M, Żebrowska E, Nesterowicz M, Żendzian-piotrowska M, Zalewska A, Srivastava S. α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. Oxidative Medicine and Cellular Longevity 2022;2022:1-21. [DOI: 10.1155/2022/7450514] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Chen JJ, Thiyagarajah M, Song J, Chen C, Herrmann N, Gallagher D, Rapoport MJ, Black SE, Ramirez J, Andreazza AC, Oh P, Marzolini S, Graham SJ, Lanctôt KL. Altered central and blood glutathione in Alzheimer's disease and mild cognitive impairment: a meta-analysis. Alzheimers Res Ther 2022;14:23. [PMID: 35123548 DOI: 10.1186/s13195-022-00961-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
19 Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, Green M, Harper D, Ren B, Forester BP, Öngür D, Du F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer's disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev 2021;72:101503. [PMID: 34751136 DOI: 10.1016/j.arr.2021.101503] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 6.5] [Reference Citation Analysis]
20 Shukla D, Mandal PK, Mishra R, Punjabi K, Dwivedi D, Tripathi M, Badhautia V. Hippocampal Glutathione Depletion and pH Increment in Alzheimer's Disease: An in vivo MRS Study. J Alzheimers Dis 2021;84:1139-52. [PMID: 34633325 DOI: 10.3233/JAD-215032] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Charney MF, Howell DR, Lanois C, Starr TC, Liao H, Coello E, Breedlove KM, Meehan WP 3rd, Koerte I, Lin AP. Associations Between Neurochemistry and Gait Performance Following Concussion in Collegiate Athletes. J Head Trauma Rehabil 2020;35:342-53. [PMID: 32881768 DOI: 10.1097/HTR.0000000000000616] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Eeza MNH, Singer R, Höfling C, Matysik J, de Groot HJM, Roβner S, Alia A. Metabolic Profiling of Suprachiasmatic Nucleus Reveals Multifaceted Effects in an Alzheimer's Disease Mouse Model. J Alzheimers Dis 2021;81:797-808. [PMID: 33843677 DOI: 10.3233/JAD-201575] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Haddad M, Hervé V, Ben Khedher MR, Rabanel JM, Ramassamy C. Glutathione: An Old and Small Molecule with Great Functions and New Applications in the Brain and in Alzheimer's Disease. Antioxid Redox Signal 2021;35:270-92. [PMID: 33637005 DOI: 10.1089/ars.2020.8129] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
24 Samkaria A, Punjabi K, Sharma S, Joon S, Sandal K, Dasgupta T, Sharma P, Mandal PK. Brain Stress Mapping in COVID-19 Survivors Using MR Spectroscopy: New Avenue of Mental Health Status Monitoring$. J Alzheimers Dis 2021. [PMID: 34250939 DOI: 10.3233/JAD-210287] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
25 Mandal PK, Shukla D. KALPANA: Advanced Spectroscopic Signal Processing Platform for Improved Accuracy to Aid in Early Diagnosis of Brain Disorders in Clinical Setting. J Alzheimers Dis 2020;75:397-402. [PMID: 32200359 DOI: 10.3233/JAD-191351] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
26 Jayakody O, Breslin M, Beare R, Srikanth VK, Blumen HM, Callisaya ML. The Associations Between Grey Matter Volume Covariance Patterns and Gait Variability-The Tasmanian Study of Cognition and Gait. Brain Topogr 2021;34:478-88. [PMID: 33914190 DOI: 10.1007/s10548-021-00841-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Zarini-Gakiye E, Sanadgol N, Parivar K, Vaezi G. Alpha-lipoic acid ameliorates tauopathy-induced oxidative stress, apoptosis, and behavioral deficits through the balance of DIAP1/DrICE ratio and redox homeostasis: Age is a determinant factor. Metab Brain Dis 2021;36:669-83. [PMID: 33547995 DOI: 10.1007/s11011-021-00679-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
28 Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem 2021;296:100105. [PMID: 33219130 DOI: 10.1074/jbc.REV120.008207] [Cited by in Crossref: 79] [Cited by in F6Publishing: 77] [Article Influence: 26.3] [Reference Citation Analysis]
29 Mandal PK, Sandal K, Shukla D, Tripathi M, Singh K, Roy S. ANSH: Multimodal Neuroimaging Database Including MR Spectroscopic Data From Each Continent to Advance Alzheimer's Disease Research. Front Neuroinform 2020;14:571039. [PMID: 33214792 DOI: 10.3389/fninf.2020.571039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
30 Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener 2020;15:30. [PMID: 32471464 DOI: 10.1186/s13024-020-00376-6] [Cited by in Crossref: 250] [Cited by in F6Publishing: 276] [Article Influence: 83.3] [Reference Citation Analysis]
31 Dwivedi D, Megha K, Mishra R, Mandal PK. Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem Res 2020;45:1461-80. [PMID: 32297027 DOI: 10.1007/s11064-020-03030-1] [Cited by in Crossref: 37] [Cited by in F6Publishing: 42] [Article Influence: 12.3] [Reference Citation Analysis]
32 Shukla D, Mandal PK, Tripathi M, Vishwakarma G, Mishra R, Sandal K. Quantitation of in vivo brain glutathione conformers in cingulate cortex among age-matched control, MCI, and AD patients using MEGA-PRESS. Hum Brain Mapp 2020;41:194-217. [PMID: 31584232 DOI: 10.1002/hbm.24799] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]