BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kermanizadeh A, Chauché C, Brown DM, Loft S, Møller P. The role of intracellular redox imbalance in nanomaterial induced cellular damage and genotoxicity: A review: NM Induced Redox Status Imbalance and Genotoxicity. Environ Mol Mutagen 2015;56:111-24. [DOI: 10.1002/em.21926] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Zhao W, Liu Y, Zhang P, Zhou P, Wu Z, Lou B, Jiang Y, Shakoor N, Li M, Li Y, Lynch I, Rui Y, Tan Z. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NanoImpact 2022;28:100420. [PMID: 36038133 DOI: 10.1016/j.impact.2022.100420] [Reference Citation Analysis]
2 Lu X, Wu M, Wang S, Qin J, Li P. Development of a NIR fluorescent probe for the detection of intracellular cysteine and glutathione and the monitoring of the drug resistance. Talanta 2021;235:122771. [PMID: 34517629 DOI: 10.1016/j.talanta.2021.122771] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
3 Al-hakkani MF, Hassan SH, Saddik MS, El-mokhtar MA, Al-shelkamy SA. Bioengineering, characterization, and biological activities of C@CuO@Cu nanocomposite based-mediated the Vicia faba seeds aqueous extract. Journal of Materials Research and Technology 2021;14:1998-2016. [DOI: 10.1016/j.jmrt.2021.07.076] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
4 More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández-Jerez A, Hougaard Bennekou S, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano Deceased V, Turck D, Younes M, Castenmiller J, Chaudhry Q, Cubadda F, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, Weigel S, Barthelemy E, Rincon A, Tarazona J, Schoonjans R; EFSA Scientific Committee. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J 2021;19:e06768. [PMID: 34377190 DOI: 10.2903/j.efsa.2021.6768] [Cited by in Crossref: 1] [Cited by in F6Publishing: 22] [Article Influence: 1.0] [Reference Citation Analysis]
5 Luo Y, Jiang Y, He Y, Shen T, Ji L, Li F, Hu W. Vina-Ginsenoside R4 from Panax ginseng Leaves Alleviates 6-OHDA-Induced Neurotoxicity in PC12 Cells Via the PI3K/Akt/GSK-3β Signaling Pathway. J Agric Food Chem 2020;68:15239-48. [PMID: 33290066 DOI: 10.1021/acs.jafc.0c06474] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ruiz-Ruiz B, Arellano-García ME, Radilla-Chávez P, Salas-Vargas DS, Toledano-Magaña Y, Casillas-Figueroa F, Luna Vazquez-Gomez R, Pestryakov A, García-Ramos JC, Bogdanchikova N. Cytokinesis-Block Micronucleus Assay Using Human Lymphocytes as a Sensitive Tool for Cytotoxicity/Genotoxicity Evaluation of AgNPs. ACS Omega 2020;5:12005-15. [PMID: 32548379 DOI: 10.1021/acsomega.0c00149] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
7 Espinosa C, Hoyos-palacio LM, López LL, Carlos-cornelio JA, Ortiz-trujillo IC. Biocompatibility evaluation on HepG2 and HUAEC of pristine and N-doped carbon nanotubes. Journal of Materials Research and Technology 2020;9:6059-72. [DOI: 10.1016/j.jmrt.2020.04.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Biola-Clier M, Gaillard JC, Rabilloud T, Armengaud J, Carriere M. Titanium Dioxide Nanoparticles Alter the Cellular Phosphoproteome in A549 Cells. Nanomaterials (Basel) 2020;10:E185. [PMID: 31973118 DOI: 10.3390/nano10020185] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
9 Chung S, Roy AK, Webster TJ. Selenium Nanoparticle Protection of Fibroblast Stress: Activation of ATF4 and Bcl-xL Expression. Int J Nanomedicine 2019;14:9995-10007. [PMID: 31908455 DOI: 10.2147/IJN.S172236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
10 Brown DM, Danielsen PH, Derr R, Moelijker N, Fowler P, Stone V, Hendriks G, Møller P, Kermanizadeh A. The mechanism-based toxicity screening of particles with use in the food and nutrition sector via the ToxTracker reporter system. Toxicol In Vitro 2019;61:104594. [PMID: 31279906 DOI: 10.1016/j.tiv.2019.104594] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
11 Alaraby M, Romero S, Hernández A, Marcos R. Toxic and Genotoxic Effects of Silver Nanoparticles in Drosophila. Environ Mol Mutagen 2019;60:277-85. [PMID: 30353950 DOI: 10.1002/em.22262] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
12 Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, Dini L, Hussain S, Mandegary A, Klionsky DJ. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 2019;15:4-33. [PMID: 30160607 DOI: 10.1080/15548627.2018.1509171] [Cited by in Crossref: 89] [Cited by in F6Publishing: 146] [Article Influence: 22.3] [Reference Citation Analysis]
13 Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA. MgO nanoparticles cytotoxicity caused primarily by GSH depletion in human lung epithelial cells. J Trace Elem Med Biol 2018;50:283-90. [PMID: 30262293 DOI: 10.1016/j.jtemb.2018.07.016] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
14 Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Younes M, Chaudhry Q, Cubadda F, Gott D, Oomen A, Weigel S, Karamitrou M, Schoonjans R, Mortensen A; EFSA Scientific Committee. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J 2018;16:e05327. [PMID: 32625968 DOI: 10.2903/j.efsa.2018.5327] [Cited by in Crossref: 59] [Cited by in F6Publishing: 79] [Article Influence: 14.8] [Reference Citation Analysis]
15 Yang Y, Gong B, Yang Y, Xie A, Shen Y, Zhu M. Construction and synergistic anticancer efficacy of magnetic targeting cabbage-like Fe3O4@MoS2@ZnO drug carriers. J Mater Chem B 2018;6:3792-9. [PMID: 32254841 DOI: 10.1039/c8tb00608c] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
16 Kermanizadeh A, Chauché C, Brown DM, Loft S, Møller P. Corrigendum to "the role of intracellular redox imbalance in nanomaterial induced cellular damage and genotoxicity: A review". Environ Mol Mutagen 2018;59:263. [PMID: 29423917 DOI: 10.1002/em.22175] [Reference Citation Analysis]
17 Maria VL, Ribeiro MJ, Guilherme S, Soares AMVM, Scott-Fordsmand JJ, Amorim MJB. Silver (nano)materials cause genotoxicity in Enchytraeus crypticus, as determined by the comet assay. Environ Toxicol Chem 2018;37:184-91. [PMID: 28796341 DOI: 10.1002/etc.3944] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
18 Kermanizadeh A, Jantzen K, Brown DM, Møller P, Loft S. A Flow Cytometry-based Method for the Screening of Nanomaterial-induced Reactive Oxygen Species Production in Leukocytes Subpopulations in Whole Blood. Basic Clin Pharmacol Toxicol 2018;122:149-56. [DOI: 10.1111/bcpt.12845] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
19 Pardo M, Katra I, Schaeur JJ, Rudich Y. Mitochondria-mediated oxidative stress induced by desert dust in rat alveolar macrophages. Geohealth 2017;1:4-16. [PMID: 32158977 DOI: 10.1002/2016GH000017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
20 Gonzalez L, Kirsch-volders M. Reprint of “Biomonitoring of genotoxic effects for human exposure to nanomaterials: The challenge ahead”. Mutation Research/Reviews in Mutation Research 2016;770:204-16. [DOI: 10.1016/j.mrrev.2016.11.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
21 Nelson BC, Wright CW, Ibuki Y, Moreno-Villanueva M, Karlsson HL, Hendriks G, Sims CM, Singh N, Doak SH. Emerging metrology for high-throughput nanomaterial genotoxicology. Mutagenesis 2017;32:215-32. [PMID: 27565834 DOI: 10.1093/mutage/gew037] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]
22 Roursgaard M, Knudsen KB, Northeved H, Persson M, Christensen T, Kumar PEK, Permin A, Andresen TL, Gjetting T, Lykkesfeldt J, Vesterdal LK, Loft S, Møller P. In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung epithelial (A549) cell lines. Toxicol In Vitro 2016;36:164-71. [PMID: 27497994 DOI: 10.1016/j.tiv.2016.08.002] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 4.8] [Reference Citation Analysis]
23 Gonzalez L, Kirsch-volders M. Biomonitoring of genotoxic effects for human exposure to nanomaterials: The challenge ahead. Mutation Research/Reviews in Mutation Research 2016;768:14-26. [DOI: 10.1016/j.mrrev.2016.03.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 2.2] [Reference Citation Analysis]
24 Kermanizadeh A, Gosens I, Maccalman L, Johnston H, Danielsen PH, Jacobsen NR, Lenz A, Fernandes T, Schins RPF, Cassee FR, Wallin H, Kreyling W, Stoeger T, Loft S, Møller P, Tran L, Stone V. A Multilaboratory Toxicological Assessment of a Panel of 10 Engineered Nanomaterials to Human Health—ENPRA Project—The Highlights, Limitations, and Current and Future Challenges. Journal of Toxicology and Environmental Health, Part B 2016;19:1-28. [DOI: 10.1080/10937404.2015.1126210] [Cited by in Crossref: 91] [Cited by in F6Publishing: 90] [Article Influence: 15.2] [Reference Citation Analysis]
25 Jiao Y, Ma S, Wang Y, Li J, Shan L, Sun J, Chen J. Methacryloxylethyl Cetyl Ammonium Chloride Induces DNA Damage and Apoptosis in Human Dental Pulp Cells via Generation of Oxidative Stress. Int J Biol Sci 2016;12:580-93. [PMID: 27143955 DOI: 10.7150/ijbs.14578] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
26 Leetham M, DeWitt J, Buck B, Goossens D, Teng Y, Pollard J, McLaurin B, Gerads R, Keil D. Oxidative stress and lung pathology following geogenic dust exposure. J Appl Toxicol 2016;36:1276-83. [PMID: 26922875 DOI: 10.1002/jat.3297] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
27 Kehrer JP, Klotz L. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health. Critical Reviews in Toxicology 2015;45:765-98. [DOI: 10.3109/10408444.2015.1074159] [Cited by in Crossref: 133] [Cited by in F6Publishing: 143] [Article Influence: 19.0] [Reference Citation Analysis]
28 Møller P, Dusinska M, Vogel U. Lessons learned from research on air pollution and other particles in the toxicology of nanomaterials and vice versa. Environ Mol Mutagen 2015;56:77-81. [PMID: 25572697 DOI: 10.1002/em.21930] [Reference Citation Analysis]