BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rekertaitė AI, Valiūnienė A, Virbickas P, Ramanavicius A. Physicochemical Characteristics of Polypyrrole/(Glucose oxidase)/(Prussian Blue)-based Biosensor Modified with Ni- and Co-Hexacyanoferrates. Electroanalysis 2019;31:50-7. [DOI: 10.1002/elan.201800526] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
Number Citing Articles
1 Zhang J, Kuang Z, Li H, Li S, Xia F. Electrode surface roughness greatly enhances the sensitivity of electrochemical non-enzymatic glucose sensors. Journal of Electroanalytical Chemistry 2022;919:116541. [DOI: 10.1016/j.jelechem.2022.116541] [Reference Citation Analysis]
2 Salatiello S, Spinelli M, Cassiano C, Amoresano A, Marini F, Cinti S. Sweat urea bioassay based on degradation of Prussian Blue as the sensing architecture. Analytica Chimica Acta 2022;1210:339882. [DOI: 10.1016/j.aca.2022.339882] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Mei X, Lu S, Chen Y. The influence of deposition time on electrochemical performance of Prussian blue-modified submicron-structured gold electrodes for hydrogen peroxide sensing. Chem Pap . [DOI: 10.1007/s11696-022-02212-1] [Reference Citation Analysis]
4 Saikrithika S, Shaju A, Dinesh B, Kumar AS. In-situ scanning electrochemical microscopy interrogation on open-circuit release of toxic Ni2+ ion from Ni-containing carbon nanomaterials and nickel-hexacyanoferrate formation in physiological pH and its thiol-electrocatalysis relevance. Electrochimica Acta 2022;405:139806. [DOI: 10.1016/j.electacta.2021.139806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Wu X, Ru Y, Bai Y, Zhang G, Shi Y, Pang H. PBA composites and their derivatives in energy and environmental applications. Coordination Chemistry Reviews 2022;451:214260. [DOI: 10.1016/j.ccr.2021.214260] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 11.0] [Reference Citation Analysis]
6 Ying S, Chen C, Wang J, Lu C, Liu T, Kong Y, Yi FY. Synthesis and Applications of Prussian Blue and Its Analogues as Electrochemical Sensors. Chempluschem 2021;86:1608-22. [PMID: 34907675 DOI: 10.1002/cplu.202100423] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Jankhunthod S, Moonla C, Watwiangkham A, Suthirakun S, Siritanon T, Wannapaiboon S, Ngamchuea K. Understanding electrochemical and structural properties of copper hexacyanoferrate: Application in hydrogen peroxide analysis. Electrochimica Acta 2021;394:139147. [DOI: 10.1016/j.electacta.2021.139147] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Zare EN, Agarwal T, Zarepour A, Pinelli F, Zarrabi A, Rossi F, Ashrafizadeh M, Maleki A, Shahbazi M, Maiti TK, Varma RS, Tay FR, Hamblin MR, Mattoli V, Makvandi P. Electroconductive multi-functional polypyrrole composites for biomedical applications. Applied Materials Today 2021;24:101117. [DOI: 10.1016/j.apmt.2021.101117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Valiūnienė A, Kavaliauskaitė G, Virbickas P, Ramanavičius A. Prussian blue based impedimetric urea biosensor. Journal of Electroanalytical Chemistry 2021;895:115473. [DOI: 10.1016/j.jelechem.2021.115473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Banavath R, Srivastava R, Bhargava P. Improved non-enzymatic H2O2 sensors using highly electroactive cobalt hexacyanoferrate nanostructures prepared through EDTA chelation route. Materials Chemistry and Physics 2021;267:124593. [DOI: 10.1016/j.matchemphys.2021.124593] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
11 Yan L, Miao K, Ma P, Ma X, Bi R, Chen F. A feasible electrochemical biosensor for determination of glucose based on Prussian blue - Enzyme aggregates cascade catalytic system. Bioelectrochemistry 2021;141:107838. [PMID: 34038858 DOI: 10.1016/j.bioelechem.2021.107838] [Reference Citation Analysis]
12 Zhuang N, Ma J, Yang L, Xue R, Qian X, Chen M, Zhang S, Chu Z, Dong W, Zhou J, Jiang M. Rapid determination of sucrose and glucose in microbial fermentation and fruit juice samples using engineered multi-enzyme biosensing microchip. Microchemical Journal 2021;164:106075. [DOI: 10.1016/j.microc.2021.106075] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Virbickas P, Kavaliauskaitė G, Valiūnienė A, Plaušinaitienė V, Rekertaitė AI, Ramanavičius A. Cobalt hexacyanoferrate based optical sensor for continuous optical sensing of hydrogen peroxide. Electrochimica Acta 2020;362:137202. [DOI: 10.1016/j.electacta.2020.137202] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
14 Hu F, Liu T, Pang J, Chu Z, Jin W. Facile preparation of porous Co3O4 nanocubes for directly screen-printing an ultrasensitive glutamate biosensor microchip. Sensors and Actuators B: Chemical 2020;306:127587. [DOI: 10.1016/j.snb.2019.127587] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 4.5] [Reference Citation Analysis]
15 Matos-peralta Y, Antuch M. Review—Prussian Blue and Its Analogs as Appealing Materials for Electrochemical Sensing and Biosensing. J Electrochem Soc 2019;167:037510. [DOI: 10.1149/2.0102003jes] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 9.7] [Reference Citation Analysis]