1 |
Zhou Z, Chen Y, Zhu S, Liu L, Ni Z, Xiang N. Inertial microfluidics for high-throughput cell analysis and detection: a review. Analyst 2021;146:6064-83. [PMID: 34490431 DOI: 10.1039/d1an00983d] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
2 |
Su X, Wei X. Cytometry and Prevalent Cancers in Asia. Cytometry A 2020;97:11-4. [PMID: 31918450 DOI: 10.1002/cyto.a.23959] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
3 |
Honrado C, Bisegna P, Swami NS, Caselli F. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. Lab Chip 2021;21:22-54. [PMID: 33331376 DOI: 10.1039/d0lc00840k] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
|
4 |
Kalyan S, Torabi C, Khoo H, Sung HW, Choi SE, Wang W, Treutler B, Kim D, Hur SC. Inertial Microfluidics Enabling Clinical Research. Micromachines (Basel) 2021;12:257. [PMID: 33802356 DOI: 10.3390/mi12030257] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
5 |
Daguerre H, Solsona M, Cottet J, Gauthier M, Renaud P, Bolopion A. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities. Lab Chip 2020;20:3665-89. [DOI: 10.1039/d0lc00616e] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
|
6 |
de Bruijn DS, Jorissen KFA, Olthuis W, van den Berg A. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry. Biosensors (Basel) 2021;11:353. [PMID: 34677309 DOI: 10.3390/bios11100353] [Reference Citation Analysis]
|