1
|
Kowli S, Minocherhomji S, Martinez OM, Busque S, Lebrec H, Maecker HT. Characterization of immune phenotypes in peripheral blood of adult renal transplant recipients using mass cytometry (CyTOF). Immunohorizons 2025; 9:vlae013. [PMID: 39965168 PMCID: PMC11841977 DOI: 10.1093/immhor/vlae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 02/20/2025] Open
Abstract
Chronic immunosuppressive therapies are crucial in organ transplantation but can increase the risk of opportunistic infections and cancer over time. We investigated immune status changes in 10 kidney transplant patients and 11 age-matched healthy adults using broad in vitro stimulation of subject-derived peripheral blood mononuclear cells followed by mass cytometry by time of flight over 6 mo. Overall, the immune cells of transplant patients exhibited increased CD8+ T cell activation and differentiation compared with healthy donors, with elevated CD8+ CD57+, MIP-1β, and interferon γ production (P < 0.05, P < 0.05, and P < 0.01, respectively). CD107a and granzyme B expression were increased in CD8+ T cells and CD56bright natural killer cells (P < 0.05 and P < 0.01, respectively), while T regulatory cells had decreased interleukin-10 production (P < 0.05). These changes indicated a proinflammatory environment influenced by induction therapy and ongoing maintenance drugs. Additionally, transplant recipients displayed signs of immune modulation, including decreased tumor necrosis factor α, interferon γ, and MIP-1β expression in γδT cells (P < 0.05 and P < 0.01), and reduced interleukin-17 and granulocyte-macrophage colony-stimulating factor expression in CD8+ T memory cell subsets (P < 0.05). The diverse functional changes underscore the importance of comprehensive immune status profiling for optimizing individual treatment strategies and developing better immunosuppressants that specifically target activated cell populations.
Collapse
Affiliation(s)
- Sangeeta Kowli
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sheroy Minocherhomji
- Amgen Inc., Thousand Oaks, CA, United States
- Eli Lilly and Company, Indianapolis, IN 46285, United States
| | - Olivia M Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States
| | - Stephan Busque
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA, United States
| | - Herve Lebrec
- Amgen Inc., Thousand Oaks, CA, United States
- Sonoma Biotherapeutics, South San Francisco, CA 94080, United States
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
2
|
Bolufer M, Soler J, Molina M, Taco O, Vila A, Macía M. Immunotherapy for Cancer in Kidney Transplant Patients: A Difficult Balance Between Risks and Benefits. Transpl Int 2024; 37:13204. [PMID: 39654653 PMCID: PMC11625584 DOI: 10.3389/ti.2024.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Cancer is a major cause of morbidity and mortality in kidney transplant patients. Unfortunately, the use of new anti-cancer therapies such as immune checkpoint inhibitors (ICPIs) in this population has been associated with rejection rates up to 40%, in retrospective studies. The main challenge is to maintain the patient in a delicate immunologic balance in which, while antitumor therapy defeats cancer the graft is safely protected from rejection. Recent clinical trials with ICPI have included kidney transplant recipients (KTRs) and the results advocate for a paradigm shift in the management of basal immunosuppression. This suggests that downward adjustments should be avoided or, even better, that this adjustment should be "dynamic." This review summarizes the latest scientific evidence available in renal transplantation under ICPI treatment: case series, prospective studies, histopathologic diagnosis, immunosuppression regimens and new biomarkers. This article will provide the latest information in on this specific field, allowing nephrologists to gain valuable knowledge and to be aware of new approaches to immunosuppression management in oncological kidney transplant patients.
Collapse
Affiliation(s)
- Mónica Bolufer
- Department of Nephrology, Hospital Universitario Germans Trias i Pujol, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2024, Badalona, Spain
| | - Jordi Soler
- Department of Nephrology, Hospital Universitario Germans Trias i Pujol, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2024, Badalona, Spain
| | - María Molina
- Department of Nephrology, Hospital Universitario Germans Trias i Pujol, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2024, Badalona, Spain
| | - Omar Taco
- Department of Nephrology, Hospital Universitario Germans Trias i Pujol, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2024, Badalona, Spain
| | - Anna Vila
- Department of Nephrology, Hospital Universitario Germans Trias i Pujol, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2024, Badalona, Spain
| | - Manuel Macía
- Department of Nephrology, Hospital Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2024, Santa Cruz de Tenerife, Spain
| |
Collapse
|
3
|
Amini L, Peter L, Schmueck-Henneresse M. Engineering a solution for allogeneic CAR-T rejection. Mol Ther 2024; 32:3204-3206. [PMID: 39265578 PMCID: PMC11489523 DOI: 10.1016/j.ymthe.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
MESH Headings
- Humans
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Transplantation, Homologous
- Animals
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Leila Amini
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT) at Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lena Peter
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Experimental Immunotherapy, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
4
|
Zhang W, Sen A, Pena JK, Reitsma A, Alexander OC, Tajima T, Martinez OM, Krams SM. Application of Mass Cytometry Platforms to Solid Organ Transplantation. Transplantation 2024; 108:2034-2044. [PMID: 38467594 PMCID: PMC11390974 DOI: 10.1097/tp.0000000000004925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Transplantation serves as the cornerstone of treatment for patients with end-stage organ disease. The prevalence of complications, such as allograft rejection, infection, and malignancies, underscores the need to dissect the complex interactions of the immune system at the single-cell level. In this review, we discuss studies using mass cytometry or cytometry by time-of-flight, a cutting-edge technology enabling the characterization of immune populations and cell-to-cell interactions in granular detail. We review the application of mass cytometry in human and experimental animal studies in the context of transplantation, uncovering invaluable contributions of the tool to understanding rejection and other transplant-related complications. We discuss recent innovations that have the potential to streamline and standardize mass cytometry workflows for application to multisite clinical trials. Additionally, we introduce imaging mass cytometry, a technique that couples the power of mass cytometry with spatial context, thereby mapping cellular interactions within tissue microenvironments. The synergistic integration of mass cytometry and imaging mass cytometry data with other omics data sets and high-dimensional data platforms to further define immune dynamics is discussed. In conclusion, mass cytometry technologies, when integrated with other tools and data, shed light on the intricate landscape of the immune response in transplantation. This approach holds significant potential for enhancing patient outcomes by advancing our understanding and facilitating the development of new diagnostics and therapeutics.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Ayantika Sen
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Josselyn K. Pena
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Andrea Reitsma
- Department of Surgery, Stanford University, Stanford, CA, United States
| | - Oliver C. Alexander
- Department of Surgery, Stanford University, Stanford, CA, United States
- Meharry Medical College, School of Medicine, Nashville, TN, United States
| | - Tetsuya Tajima
- Department of Surgery, Stanford University, Stanford, CA, United States
| | | | - Sheri M. Krams
- Department of Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
5
|
Zhi Y, Qiu W, Tian G, Song S, Zhao W, Du X, Sun X, Chen Y, Huang H, Li J, Yu Y, Li M, Lv G. Donor and recipient hematopoietic stem and progenitor cells mobilization in liver transplantation patients. Stem Cell Res Ther 2024; 15:231. [PMID: 39075608 PMCID: PMC11288126 DOI: 10.1186/s13287-024-03855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Hematopoietic stem and progenitor cells (HSPCs) mobilize from bone marrow to peripheral blood in response to stress. The impact of alloresponse-induced stress on HSPCs mobilization in human liver transplantation (LTx) recipients remains under-investigated. METHODS Peripheral blood mononuclear cell (PBMC) samples were longitudinally collected from pre- to post-LTx for one year from 36 recipients with acute rejection (AR), 74 recipients without rejection (NR), and 5 recipients with graft-versus-host disease (GVHD). 28 PBMC samples from age-matched healthy donors were collected as healthy control (HC). Multi-color flow cytometry (MCFC) was used to immunophenotype HSPCs and their subpopulations. Donor recipient-distinguishable major histocompatibility complex (MHC) antibodies determined cell origin. RESULTS Before LTx, patients who developed AR after transplant contained more HSPCs in PBMC samples than HC, while the NR group patients contained fewer HSPCs than HC. After LTx, the HSPC ratio in the AR group sharply decreased and became less than HC within six months, and dropped to a comparable NR level afterward. During the one-year follow-up period, myeloid progenitors (MPs) biased differentiation was observed in all LTx recipients who were under tacrolimus-based immunosuppressive treatment. During both AR and GVHD episodes, the recipient-derived and donor-derived HSPCs mobilized into the recipient's blood-circulation and migrated to the target tissue, respectively. The HSPCs percentage in blood reduced after the disease was cured. CONCLUSIONS A preoperative high HSPC ratio in blood characterizes recipients who developed AR after LTx. Recipients exhibited a decline in blood-circulating HSPCs after transplant, the cells mobilized into the blood and migrated to target tissue during alloresponse.
Collapse
Affiliation(s)
- Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guangyao Tian
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wenchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yuguo Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Heyu Huang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Yu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Lin L, Ren R, Xiong Q, Zheng C, Yang B, Wang H. Remodeling of T-cell mitochondrial metabolism to treat autoimmune diseases. Autoimmun Rev 2024; 23:103583. [PMID: 39084278 DOI: 10.1016/j.autrev.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
T cells are key drivers of the pathogenesis of autoimmune diseases by producing cytokines, stimulating the generation of autoantibodies, and mediating tissue and cell damage. Distinct mitochondrial metabolic pathways govern the direction of T-cell differentiation and function and rely on specific nutrients and metabolic enzymes. Metabolic substrate uptake and mitochondrial metabolism form the foundational elements for T-cell activation, proliferation, differentiation, and effector function, contributing to the dynamic interplay between immunological signals and mitochondrial metabolism in coordinating adaptive immunity. Perturbations in substrate availability and enzyme activity may impair T-cell immunosuppressive function, fostering autoreactive responses and disrupting immune homeostasis, ultimately contributing to autoimmune disease pathogenesis. A growing body of studies has explored how metabolic processes regulate the function of diverse T-cell subsets in autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune hepatitis (AIH), inflammatory bowel disease (IBD), and psoriasis. This review describes the coordination of T-cell biology by mitochondrial metabolism, including the electron transport chain (ETC), oxidative phosphorylation, amino acid metabolism, fatty acid metabolism, and one‑carbon metabolism. This study elucidated the intricate crosstalk between mitochondrial metabolic programs, signal transduction pathways, and transcription factors. This review summarizes potential therapeutic targets for T-cell mitochondrial metabolism and signaling in autoimmune diseases, providing insights for future studies.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruyu Ren
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Xiong
- Department of Infectious Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Wang R, Peng X, Yuan Y, Shi B, Liu Y, Ni H, Guo W, Yang Q, Liu P, Wang J, Su Z, Yu S, Liu D, Zhang J, Xia J, Liu X, Li H, Yang Z, Peng Z. Dynamic immune recovery process after liver transplantation revealed by single-cell multi-omics analysis. Innovation (N Y) 2024; 5:100599. [PMID: 38510071 PMCID: PMC10952083 DOI: 10.1016/j.xinn.2024.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Elucidating the temporal process of immune remodeling under immunosuppressive treatment after liver transplantation (LT) is critical for precise clinical management strategies. Here, we performed a single-cell multi-omics analysis of peripheral blood mononuclear cells (PBMCs) collected from LT patients (with and without acute cellular rejection [ACR]) at 13 time points. Validation was performed in two independent cohorts with additional LT patients and healthy controls. Our study revealed a four-phase recovery process after LT and delineated changes in immune cell composition, expression programs, and interactions along this process. The intensity of the immune response differs between the ACR and non-ACR patients. Notably, the newly identified inflamed NK cells, CD14+RNASE2+ monocytes, and FOS-expressing monocytes emerged as predictive indicators of ACR. This study illuminates the longitudinal evolution of the immune cell landscape under tacrolimus-based immunosuppressive treatment during LT recovery, providing a four-phase framework that aids the clinical management of LT patients.
Collapse
Affiliation(s)
- Rui Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiao Peng
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yixin Yuan
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Baojie Shi
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hengxiao Ni
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qiwei Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Pingguo Liu
- Department of Hepatobiliary & Pancreatic Surgery, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jie Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhaojie Su
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shengnan Yu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Dehua Liu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jinyan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Junjie Xia
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hao Li
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhengfeng Yang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhihai Peng
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Wang N, Zhou K, Liang Z, Sun R, Tang H, Yang Z, Zhao W, Peng Y, Song P, Zheng S, Xie H. RapaLink-1 outperforms rapamycin in alleviating allogeneic graft rejection by inhibiting the mTORC1-4E-BP1 pathway in mice. Int Immunopharmacol 2023; 125:111172. [PMID: 37951193 DOI: 10.1016/j.intimp.2023.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
Inhibition of mammalian target of rapamycin (mTOR), which is a component of both mTORC1 and mTORC2, leads to clinical benefits for organ transplant recipients. Pathways to inhibit mTOR include strengthening the association of FKBP12-mTOR or competing with ATP at the active site of mTOR, which have been applied to the design of first- and second-generation mTOR inhibitors, respectively. However, the clinical efficacy of these mTOR inhibitors may be limited by side effects, compensatory activation of kinases and attenuation of feedback inhibition of receptor expression. A new generation of mTOR inhibitors possess a core structure similar to rapamycin and covalently link to mTOR kinase inhibitors, resulting in moderate selectivity and potent inhibition of mTORC1. Since the immunosuppressive potential of this class of compounds remains unknown, our goal is to examine the therapeutic efficacy of a third-generation mTOR inhibitor in organ transplantation. In this study, RapaLink-1 outperformed rapamycin in inhibiting T-cell proliferation and significantly prolonged graft survival time. Mechanistically, the ameliorated rejection induced by RapaLink-1 is associated with a reduction in p-4E-BP1 in T cells, resulting in an elevation in Treg cells alongside a decline in Th1 and Th17 cells. For the first time, these studies demonstrate the effectiveness of third-generation mTOR inhibitors in inhibiting allograft rejection, highlighting the potential of this novel class of mTOR inhibitors for further investigation.
Collapse
Affiliation(s)
- Ning Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ke Zhou
- Division of Lung Transplantation and Thoracic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhi Liang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ruiqi Sun
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hong Tang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhentao Yang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wentao Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yiyang Peng
- College of Pharmaceutical Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of Organ Transplantation, State Key Laboratory for The Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou 310003, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China; Key Laboratory of Organ Transplantation, State Key Laboratory for The Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
9
|
Del Bello A, Treiner E. Immune Checkpoints in Solid Organ Transplantation. BIOLOGY 2023; 12:1358. [PMID: 37887068 PMCID: PMC10604300 DOI: 10.3390/biology12101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Allogenic graft acceptance is only achieved by life-long immunosuppression, which comes at the cost of significant toxicity. Clinicians face the challenge of adapting the patients' treatments over long periods to lower the risks associated with these toxicities, permanently leveraging the risk of excessive versus insufficient immunosuppression. A major goal and challenge in the field of solid organ transplantation (SOT) is to attain a state of stable immune tolerance specifically towards the grafted organ. The immune system is equipped with a set of inhibitory co-receptors known as immune checkpoints (ICs), which physiologically regulate numerous effector functions. Insufficient regulation through these ICs can lead to autoimmunity and/or immune-mediated toxicity, while excessive expression of ICs induces stable hypo-responsiveness, especially in T cells, a state sometimes referred to as exhaustion. IC blockade has emerged in the last decade as a powerful therapeutic tool against cancer. The opposite action, i.e., subverting IC for the benefit of establishing a state of specific hypo-responsiveness against auto- or allo-antigens, is still in its infancy. In this review, we will summarize the available literature on the role of ICs in SOT and the relevance of ICs with graft acceptance. We will also discuss the possible influence of current immunosuppressive medications on IC functions.
Collapse
Affiliation(s)
- Arnaud Del Bello
- Department of Nephrology, University Hospital of Toulouse, 31400 Toulouse, France
- Metabolic and Cardiovascular Research Institute (I2MC), Inserm UMR1297, CEDEX 4, 31432 Toulouse, France
- Faculty of Medicine, University Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Emmanuel Treiner
- Faculty of Medicine, University Toulouse III Paul Sabatier, 31062 Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, 31024 Toulouse, France
| |
Collapse
|
10
|
Li Y, Wang B, Ahmad Khan Z, He J, Cheung E, Su W, Wang A, Jiang H, Jiang L, Ding X. Platinum-Chimeric Carrier Cells for Ultratrace Cell Analysis in Mass Cytometry. Anal Chem 2023; 95:14998-15007. [PMID: 37767956 DOI: 10.1021/acs.analchem.3c02706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mass cytometry by time-of-flight (CyTOF), a high-dimensional single-cell analysis platform, detects up to 50 biomarkers at single-cell resolution. However, CyTOF analysis of biological samples with a minimal number of available cells or rare cell subsets remains a major technical challenge due to the extensive loss of cells during cell recovery, staining, and acquisition. Here, we introduce a platinum-chimeric carrier cell strategy for mass cytometry profiling of ultratrace cell samples. Cisplatin can rapidly enter broken plasma membranes of dead cells and form a chimeric interaction with cellular proteins, peptides, and amino acids. Thus, 198Pt-cisplatin is adopted to tag carrier cells in the pretreatment stage. We investigated 8 cell lines that are commonly accessible in laboratories for their potential as carrier cells to preserve rare target cells for CyTOF analysis. We designed a panel of 35 protein biomarkers to evaluate the comprehensive single-cell subtype classification capability with or without the carrier cell strategy. We further demonstrated the detection and analysis of as few as 1 × 104 immune cells using our method. The proposed method thus allows CyTOF analysis on precious clinical samples with less abundant cells.
Collapse
Affiliation(s)
- Yiyang Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Boqian Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Zara Ahmad Khan
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Jie He
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Edwin Cheung
- Cancer Centre, University of Macau, Taipa 999078, Macau SAR
- Centre for Precision Medicine Research and Training, University of Macau, Taipa 999078, Macau SAR
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau SAR
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau SAR
| | - Wenqiong Su
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hui Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
11
|
Cao T, Xie F, Shi Y, Xu J, Liu Y, Cui D, Zhang F, Lin L, Li W, Gao Y, Ruan Y, Wang X, Zhu Y, Han B, Xia S, Guo W, Li B, Jing Y. Rapamycin and Low-dose IL-2 Mediate an Immunosuppressive Microenvironment to Inhibit Benign Prostatic Hyperplasia. Int J Biol Sci 2023; 19:3441-3455. [PMID: 37497009 PMCID: PMC10367549 DOI: 10.7150/ijbs.85089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is a condition that becomes more common with age and manifests itself primarily as the expansion of the prostate and surrounding tissues. However, to date, the etiology of BPH remains unclear. In this respect, we performed single-cell RNA sequencing of prostate transition zone tissues from elderly individuals with different prostate volumes to reveal their distinct tissue microenvironment. Ultimately, we demonstrated that a reduced Treg/CD4+ T-cell ratio in the large-volume prostate and a relatively activated immune microenvironment were present, characterized partially by increased expression levels of granzymes, which may promote vascular growth and profibrotic processes and further exacerbate BPH progression. Consistently, we observed that the prostate gland of patients taking immunosuppressive drugs usually remained at a smaller volume. Furthermore, in mouse models, we confirmed that both suppression of the immune system with rapamycin and induction of Treg proliferation with low doses of IL-2 therapy indeed prevented the progression of BPH. Taken together, our findings suggest that an activated immune microenvironment is necessary for prostate volume growth and that Tregs can reverse this immune activation state, thereby inhibiting the progression of BPH.
Collapse
Affiliation(s)
- Tianyu Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xie
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youwei Shi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhao Xu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Liu
- Department of Plastic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihui Lin
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weize Li
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Gao
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohai Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiping Zhu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bangmin Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhuan Guo
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Arthritis Research, Guanghua Integrative Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Integrated TCM & Western Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Henan Key Laboratory for Digestive Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Shenzhen, China
| | - Yifeng Jing
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Zhang L, Yang J, Deng M, Xu C, Lai C, Deng X, Wang Y, Zhou Q, Liu Y, Wan L, Li P, Fang J, Hou J, Lai X, Ma F, Li N, Li G, Kong W, Zhang W, Li J, Cao M, Feng L, Chen Z, Chen L, Ji T. Blood unconjugated bilirubin and tacrolimus are negative predictors of specific cellular immunity in kidney transplant recipients after SAR-CoV-2 inactivated vaccination. Sci Rep 2023; 13:7263. [PMID: 37142713 PMCID: PMC10158706 DOI: 10.1038/s41598-023-29669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/08/2023] [Indexed: 05/06/2023] Open
Abstract
The immunogenicity of SARS-CoV-2 vaccines is poor in kidney transplant recipients (KTRs). The factors related to poor immunogenicity to vaccination in KTRs are not well defined. Here, observational study demonstrated no severe adverse effects were observed in KTRs and healthy participants (HPs) after first or second dose of SARS-CoV-2 inactivated vaccine. Different from HPs with excellent immunity against SARS-CoV-2, IgG antibodies against S1 subunit of spike protein, receptor-binding domain, and nucleocapsid protein were not effectively induced in a majority of KTRs after the second dose of inactivated vaccine. Specific T cell immunity response was detectable in 40% KTRs after the second dose of inactivated vaccine. KTRs who developed specific T cell immunity were more likely to be female, and have lower levels of total bilirubin, unconjugated bilirubin, and blood tacrolimus concentrations. Multivariate logistic regression analysis found that blood unconjugated bilirubin and tacrolimus concentration were significantly negatively associated with SARS-CoV-2 specific T cell immunity response in KTRs. Altogether, these data suggest compared to humoral immunity, SARS-CoV-2 specific T cell immunity response are more likely to be induced in KTRs after administration of inactivated vaccine. Reduction of unconjugated bilirubin and tacrolimus concentration might benefit specific cellular immunity response in KTRs following vaccination.
Collapse
Affiliation(s)
- Lei Zhang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
- Department of Organ Transplantation, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Jiaqing Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Min Deng
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Chuanhui Xu
- Neurosurgery Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Changchun Lai
- Clinical Laboratory Medicine Department, Maoming People's Hospital, Maoming, 525000, People's Republic of China
| | - Xuanying Deng
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yan Wang
- Department of Pulmonary and Critical Care Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China
| | - Qiang Zhou
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yichu Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Li Wan
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Jiali Fang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jingcai Hou
- Organ Transplant Department, Zhongshan City People's Hospital, Zhongshan, 528403, People's Republic of China
| | - Xingqiang Lai
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Feifei Ma
- Obstetrical Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Ning Li
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Guanghui Li
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiya Kong
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Weiting Zhang
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jiali Li
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Mibu Cao
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
- State Key Laboratories of Respiratory Diseases, Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Bioland Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China
| | - Zheng Chen
- Kidney Transplant Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, People's Republic of China.
- State Key Laboratories of Respiratory Diseases, Guangdong-Hong Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Tianxing Ji
- Clinical Laboratory Medicine Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
13
|
Llinàs-Mallol L, Raïch-Regué D, Pascual J, Crespo M. Alloimmune risk assessment for antibody-mediated rejection in kidney transplantation: A practical proposal. Transplant Rev (Orlando) 2023; 37:100745. [PMID: 36572001 DOI: 10.1016/j.trre.2022.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Kidney transplantation is the treatment of choice for patients with end-stage renal disease. Although an improvement in graft survival has been observed in the last decades with the use of different immunosuppressive drugs, this is still limited in time with antibody-mediated rejection being a main cause of graft-loss. Immune monitoring and risk assessment of antibody-mediated rejection before and after kidney transplantation with useful biomarkers is key to tailoring treatments to achieve the best outcomes. Here, we provide a review of the rationale and several accessible tools for immune monitoring, from the most classic to the modern ones. Finally, we end up discussing a practical proposal for alloimmune risk assessment in kidney transplantation, including histocompatibility leukocyte antigen (HLA) and non-HLA antibodies, HLA molecular mismatch analysis and characterization of peripheral blood immune cells.
Collapse
Affiliation(s)
- Laura Llinàs-Mallol
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Dàlia Raïch-Regué
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Julio Pascual
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain.
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| |
Collapse
|
14
|
Barbetta A, Rocque B, Sarode D, Bartlett JA, Emamaullee J. Revisiting transplant immunology through the lens of single-cell technologies. Semin Immunopathol 2023; 45:91-109. [PMID: 35980400 PMCID: PMC9386203 DOI: 10.1007/s00281-022-00958-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Solid organ transplantation (SOT) is the standard of care for end-stage organ disease. The most frequent complication of SOT involves allograft rejection, which may occur via T cell- and/or antibody-mediated mechanisms. Diagnosis of rejection in the clinical setting requires an invasive biopsy as there are currently no reliable biomarkers to detect rejection episodes. Likewise, it is virtually impossible to identify patients who exhibit operational tolerance and may be candidates for reduced or complete withdrawal of immunosuppression. Emerging single-cell technologies, including cytometry by time-of-flight (CyTOF), imaging mass cytometry, and single-cell RNA sequencing, represent a new opportunity for deep characterization of pathogenic immune populations involved in both allograft rejection and tolerance in clinical samples. These techniques enable examination of both individual cellular phenotypes and cell-to-cell interactions, ultimately providing new insights into the complex pathophysiology of allograft rejection. However, working with these large, highly dimensional datasets requires expertise in advanced data processing and analysis using computational biology techniques. Machine learning algorithms represent an optimal strategy to analyze and create predictive models using these complex datasets and will likely be essential for future clinical application of patient level results based on single-cell data. Herein, we review the existing literature on single-cell techniques in the context of SOT.
Collapse
Affiliation(s)
- Arianna Barbetta
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA
- University of Southern California, Los Angeles, CA, USA
| | - Brittany Rocque
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA
- University of Southern California, Los Angeles, CA, USA
| | - Deepika Sarode
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA
- University of Southern California, Los Angeles, CA, USA
| | - Johanna Ascher Bartlett
- Pediatric Gastroenterology, Hepatology and Nutrition, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Juliet Emamaullee
- Department of Surgery, Division of Abdominal Organ Transplant, University of Southern California, 1510 San Pablo St. Suite 412, Los Angeles, CA, 90033, USA.
- University of Southern California, Los Angeles, CA, USA.
- Division of Hepatobiliary and Abdominal Organ Transplantation Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|