BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Christensen EI, Wagner CA, Kaissling B. Uriniferous tubule: structural and functional organization. Compr Physiol 2012;2:805-61. [PMID: 23961562 DOI: 10.1002/cphy.c100073] [Cited by in Crossref: 11] [Cited by in F6Publishing: 24] [Article Influence: 1.2] [Reference Citation Analysis]
Number Citing Articles
1 Bugarski M, Martins JR, Haenni D, Hall AM. Multiphoton imaging reveals axial differences in metabolic autofluorescence signals along the kidney proximal tubule. Am J Physiol Renal Physiol 2018;315:F1613-25. [PMID: 30132348 DOI: 10.1152/ajprenal.00165.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
2 Weisz OA. Endocytic adaptation to functional demand by the kidney proximal tubule. J Physiol 2021;599:3437-46. [PMID: 34036593 DOI: 10.1113/JP281599] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Polesel M, Hall AM. Axial differences in endocytosis along the kidney proximal tubule. American Journal of Physiology-Renal Physiology 2019;317:F1526-30. [DOI: 10.1152/ajprenal.00459.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
4 Gaide Chevronnay HP, Janssens V, Van Der Smissen P, N'Kuli F, Nevo N, Guiot Y, Levtchenko E, Marbaix E, Pierreux CE, Cherqui S, Antignac C, Courtoy PJ. Time course of pathogenic and adaptation mechanisms in cystinotic mouse kidneys. J Am Soc Nephrol 2014;25:1256-69. [PMID: 24525030 DOI: 10.1681/ASN.2013060598] [Cited by in Crossref: 49] [Cited by in F6Publishing: 27] [Article Influence: 6.1] [Reference Citation Analysis]
5 Gottwald EM, Schuh CD, Drücker P, Haenni D, Pearson A, Ghazi S, Bugarski M, Polesel M, Duss M, Landau EM, Kaech A, Ziegler U, Lundby AKM, Lundby C, Dittrich PS, Hall AM. The iron chelator Deferasirox causes severe mitochondrial swelling without depolarization due to a specific effect on inner membrane permeability. Sci Rep 2020;10:1577. [PMID: 32005861 DOI: 10.1038/s41598-020-58386-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
6 Vedula EM, Alonso JL, Arnaout MA, Charest JL. A microfluidic renal proximal tubule with active reabsorptive function. PLoS One 2017;12:e0184330. [PMID: 29020011 DOI: 10.1371/journal.pone.0184330] [Cited by in Crossref: 39] [Cited by in F6Publishing: 32] [Article Influence: 7.8] [Reference Citation Analysis]
7 Sasaki H, Sugiyama M, Sasaki N. Establishment of renal proximal tubule cell lines derived from the kidney of p53 knockout mice. Cytotechnology 2019;71:45-56. [PMID: 30603921 DOI: 10.1007/s10616-018-0261-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
8 Daryadel A, Haubitz M, Figueiredo M, Steubl D, Roos M, Mäder A, Hettwer S, Wagner CA. The C-Terminal Fragment of Agrin (CAF), a Novel Marker of Renal Function, Is Filtered by the Kidney and Reabsorbed by the Proximal Tubule. PLoS One 2016;11:e0157905. [PMID: 27380275 DOI: 10.1371/journal.pone.0157905] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
9 Martins JR, Haenni D, Bugarski M, Figurek A, Hall AM. Quantitative intravital Ca 2+ imaging maps single cell behavior to kidney tubular structure. American Journal of Physiology-Renal Physiology 2020;319:F245-55. [DOI: 10.1152/ajprenal.00052.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Penton D, Czogalla J, Loffing J. Dietary potassium and the renal control of salt balance and blood pressure. Pflugers Arch 2015;467:513-30. [PMID: 25559844 DOI: 10.1007/s00424-014-1673-1] [Cited by in Crossref: 44] [Cited by in F6Publishing: 40] [Article Influence: 6.3] [Reference Citation Analysis]
11 Janssens V, Gaide Chevronnay HP, Marie S, Vincent MF, Van Der Smissen P, Nevo N, Vainio S, Nielsen R, Christensen EI, Jouret F, Antignac C, Pierreux CE, Courtoy PJ. Protection of Cystinotic Mice by Kidney-Specific Megalin Ablation Supports an Endocytosis-Based Mechanism for Nephropathic Cystinosis Progression. J Am Soc Nephrol 2019;30:2177-90. [PMID: 31548351 DOI: 10.1681/ASN.2019040371] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hall AM, Trepiccione F, Unwin RJ. Drug toxicity in the proximal tubule: new models, methods and mechanisms. Pediatr Nephrol 2021. [PMID: 34050397 DOI: 10.1007/s00467-021-05121-9] [Reference Citation Analysis]
13 Schuh CD, Polesel M, Platonova E, Haenni D, Gassama A, Tokonami N, Ghazi S, Bugarski M, Devuyst O, Ziegler U, Hall AM. Combined Structural and Functional Imaging of the Kidney Reveals Major Axial Differences in Proximal Tubule Endocytosis. J Am Soc Nephrol 2018;29:2696-712. [PMID: 30301861 DOI: 10.1681/ASN.2018050522] [Cited by in Crossref: 32] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
14 Schäffers OJM, Hoenderop JGJ, Bindels RJM, de Baaij JHF. The rise and fall of novel renal magnesium transporters. American Journal of Physiology-Renal Physiology 2018;314:F1027-33. [DOI: 10.1152/ajprenal.00634.2017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
15 Park HJ, Fan Z, Bai Y, Ren Q, Rbaibi Y, Long KR, Gliozzi ML, Rittenhouse N, Locker JD, Poholek AC, Weisz OA. Transcriptional Programs Driving Shear Stress-Induced Differentiation of Kidney Proximal Tubule Cells in Culture. Front Physiol 2020;11:587358. [PMID: 33192601 DOI: 10.3389/fphys.2020.587358] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
16 Genini A, Mohebbi N, Daryadel A, Bettoni C, Wagner CA. Adaptive response of the murine collecting duct to alkali loading. Pflugers Arch - Eur J Physiol 2020;472:1079-92. [DOI: 10.1007/s00424-020-02423-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Christensen EI, Birn H, Storm T, Weyer K, Nielsen R. Endocytic Receptors in the Renal Proximal Tubule. Physiology 2012;27:223-36. [DOI: 10.1152/physiol.00022.2012] [Cited by in Crossref: 128] [Cited by in F6Publishing: 135] [Article Influence: 12.8] [Reference Citation Analysis]
18 Nawata CM, Pannabecker TL. Mammalian urine concentration: a review of renal medullary architecture and membrane transporters. J Comp Physiol B 2018;188:899-918. [PMID: 29797052 DOI: 10.1007/s00360-018-1164-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
19 Grieco G, Janssens V, Gaide Chevronnay HP, N'Kuli F, Van Der Smissen P, Wang T, Shan J, Vainio S, Bilanges B, Jouret F, Vanhaesebroeck B, Pierreux CE, Courtoy PJ. Vps34/PI3KC3 deletion in kidney proximal tubules impairs apical trafficking and blocks autophagic flux, causing a Fanconi-like syndrome and renal insufficiency. Sci Rep 2018;8:14133. [PMID: 30237523 DOI: 10.1038/s41598-018-32389-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
20 Lake BB, Chen S, Hoshi M, Plongthongkum N, Salamon D, Knoten A, Vijayan A, Venkatesh R, Kim EH, Gao D, Gaut J, Zhang K, Jain S. A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nat Commun 2019;10:2832. [PMID: 31249312 DOI: 10.1038/s41467-019-10861-2] [Cited by in Crossref: 79] [Cited by in F6Publishing: 61] [Article Influence: 26.3] [Reference Citation Analysis]
21 Xie L, Dibb R, Cofer GP, Li W, Nicholls PJ, Johnson GA, Liu C. Susceptibility tensor imaging of the kidney and its microstructural underpinnings. Magn Reson Med 2015;73:1270-81. [PMID: 24700637 DOI: 10.1002/mrm.25219] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 4.8] [Reference Citation Analysis]
22 Dibb R, Xie L, Wei H, Liu C. Magnetic susceptibility anisotropy outside the central nervous system. NMR Biomed 2017;30. [PMID: 27199082 DOI: 10.1002/nbm.3544] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
23 Daryadel A, Bourgeois S, Figueiredo MF, Gomes Moreira A, Kampik NB, Oberli L, Mohebbi N, Lu X, Meima ME, Danser AH, Wagner CA. Colocalization of the (Pro)renin Receptor/Atp6ap2 with H+-ATPases in Mouse Kidney but Prorenin Does Not Acutely Regulate Intercalated Cell H+-ATPase Activity. PLoS One 2016;11:e0147831. [PMID: 26824839 DOI: 10.1371/journal.pone.0147831] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
24 Pathare G, Dhayat NA, Mohebbi N, Wagner CA, Bobulescu IA, Moe OW, Fuster DG. Changes in V-ATPase subunits of human urinary exosomes reflect the renal response to acute acid/alkali loading and the defects in distal renal tubular acidosis. Kidney Int 2018;93:871-80. [PMID: 29310826 DOI: 10.1016/j.kint.2017.10.018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]