BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rizzi S, Knaus HG, Schwarzer C. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain. J Comp Neurol 2016;524:2093-116. [PMID: 26587966 DOI: 10.1002/cne.23934] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Cole BA, Johnson RM, Dejakaisaya H, Pilati N, Fishwick CWG, Muench SP, Lippiat JD. Structure-Based Identification and Characterization of Inhibitors of the Epilepsy-Associated KNa1.1 (KCNT1) Potassium Channel. iScience 2020;23:101100. [PMID: 32408169 DOI: 10.1016/j.isci.2020.101100] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
2 Lim CX, Ricos MG, Dibbens LM, Heron SE. KCNT1 mutations in seizure disorders: the phenotypic spectrum and functional effects. J Med Genet 2016;53:217-25. [DOI: 10.1136/jmedgenet-2015-103508] [Cited by in Crossref: 55] [Cited by in F6Publishing: 45] [Article Influence: 9.2] [Reference Citation Analysis]
3 Gertler TS, Thompson CH, Vanoye CG, Millichap JJ, George AL Jr. Functional consequences of a KCNT1 variant associated with status dystonicus and early-onset infantile encephalopathy. Ann Clin Transl Neurol 2019;6:1606-15. [PMID: 31560846 DOI: 10.1002/acn3.50847] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
4 Evely KM, Pryce KD, Bausch AE, Lukowski R, Ruth P, Haj-Dahmane S, Bhattacharjee A. Slack KNa Channels Influence Dorsal Horn Synapses and Nociceptive Behavior. Mol Pain 2017;13:1744806917714342. [PMID: 28604221 DOI: 10.1177/1744806917714342] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
5 Evely KM, Pryce KD, Bhattacharjee A. The Phe932Ile mutation in KCNT1 channels associated with severe epilepsy, delayed myelination and leukoencephalopathy produces a loss-of-function channel phenotype. Neuroscience 2017;351:65-70. [PMID: 28366665 DOI: 10.1016/j.neuroscience.2017.03.035] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
6 Gururaj S, Palmer EE, Sheehan GD, Kandula T, Macintosh R, Ying K, Morris P, Tao J, Dias KR, Zhu Y, Dinger ME, Cowley MJ, Kirk EP, Roscioli T, Sachdev R, Duffey ME, Bye A, Bhattacharjee A. A De Novo Mutation in the Sodium-Activated Potassium Channel KCNT2 Alters Ion Selectivity and Causes Epileptic Encephalopathy. Cell Rep 2017;21:926-33. [PMID: 29069600 DOI: 10.1016/j.celrep.2017.09.088] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
7 Cole BA, Clapcote SJ, Muench SP, Lippiat JD. Targeting KNa1.1 channels in KCNT1-associated epilepsy. Trends Pharmacol Sci 2021;42:700-13. [PMID: 34074526 DOI: 10.1016/j.tips.2021.05.003] [Reference Citation Analysis]
8 Tejada MA, Hashem N, Calloe K, Klaerke DA. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes. PLoS One 2017;12:e0169914. [PMID: 28222129 DOI: 10.1371/journal.pone.0169914] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
9 Tomasello DL, Hurley E, Wrabetz L, Bhattacharjee A. Slick (Kcnt2) Sodium-Activated Potassium Channels Limit Peptidergic Nociceptor Excitability and Hyperalgesia. J Exp Neurosci 2017;11:1179069517726996. [PMID: 28943756 DOI: 10.1177/1179069517726996] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.4] [Reference Citation Analysis]
10 Byers N, Hahm ET, Tsunoda S. Slo2/KNa Channels in Drosophila Protect against Spontaneous and Induced Seizure-like Behavior Associated with an Increased Persistent Na+ Current. J Neurosci 2021;41:9047-63. [PMID: 34544836 DOI: 10.1523/JNEUROSCI.0290-21.2021] [Reference Citation Analysis]
11 Guerrini R, Conti V, Mantegazza M, Balestrini S, Galanopoulou AS, Benfenati F. Developmental and epileptic encephalopathies: from genetic heterogeneity to phenotypic continuum. Physiol Rev 2022. [PMID: 35951482 DOI: 10.1152/physrev.00063.2021] [Reference Citation Analysis]
12 Kuchenbuch M, Nabbout R, Yochum M, Sauleau P, Modolo J, Wendling F, Benquet P. In silico model reveals the key role of GABA in KCNT1-epilepsy in infancy with migrating focal seizures. Epilepsia 2021;62:683-97. [PMID: 33617692 DOI: 10.1111/epi.16834] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Matt L, Pham T, Skrabak D, Hoffmann F, Eckert P, Yin J, Gisevius M, Ehinger R, Bausch A, Ueffing M, Boldt K, Ruth P, Lukowski R. The Na+-activated K+ channel Slack contributes to synaptic development and plasticity. Cell Mol Life Sci 2021;78:7569-87. [PMID: 34664085 DOI: 10.1007/s00018-021-03953-0] [Reference Citation Analysis]
14 Quraishi IH, Mercier MR, McClure H, Couture RL, Schwartz ML, Lukowski R, Ruth P, Kaczmarek LK. Impaired motor skill learning and altered seizure susceptibility in mice with loss or gain of function of the Kcnt1 gene encoding Slack (KNa1.1) Na+-activated K+ channels. Sci Rep 2020;10:3213. [PMID: 32081855 DOI: 10.1038/s41598-020-60028-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
15 Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021;15:685703. [PMID: 34276310 DOI: 10.3389/fncel.2021.685703] [Reference Citation Analysis]
16 Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020;11:614. [PMID: 32655623 DOI: 10.3389/fgene.2020.00614] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
17 Garcia-Pino E, Gessele N, Koch U. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice. J Neurosci 2017;37:7403-19. [PMID: 28674175 DOI: 10.1523/JNEUROSCI.2310-16.2017] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 3.8] [Reference Citation Analysis]
18 Ehinger R, Kuret A, Matt L, Frank N, Wild K, Kabagema-Bilan C, Bischof H, Malli R, Ruth P, Bausch AE, Lukowski R. Slack K+ channels attenuate NMDA-induced excitotoxic brain damage and neuronal cell death. FASEB J 2021;35:e21568. [PMID: 33817875 DOI: 10.1096/fj.202002308RR] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
19 Bausch AE, Ehinger R, Straubinger J, Zerfass P, Nann Y, Lukowski R. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice. Neuroscience 2018;384:361-74. [DOI: 10.1016/j.neuroscience.2018.05.040] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
20 Niu LG, Liu P, Wang ZW, Chen B. Slo2 potassium channel function depends on RNA editing-regulated expression of a SCYL1 protein. Elife 2020;9:e53986. [PMID: 32314960 DOI: 10.7554/eLife.53986] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H, Ohlstein EH. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2016;69:1-11. [DOI: 10.1124/pr.116.012864] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 7.2] [Reference Citation Analysis]
22 Shore AN, Colombo S, Tobin WF, Petri S, Cullen ER, Dominguez S, Bostick CD, Beaumont MA, Williams D, Khodagholy D, Yang M, Lutz CM, Peng Y, Gelinas JN, Goldstein DB, Boland MJ, Frankel WN, Weston MC. Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy. Cell Rep 2020;33:108303. [PMID: 33113364 DOI: 10.1016/j.celrep.2020.108303] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
23 Mao X, Bruneau N, Gao Q, Becq H, Jia Z, Xi H, Shu L, Wang H, Szepetowski P, Aniksztejn L. The Epilepsy of Infancy With Migrating Focal Seizures: Identification of de novo Mutations of the KCNT2 Gene That Exert Inhibitory Effects on the Corresponding Heteromeric KNa1.1/KNa1.2 Potassium Channel. Front Cell Neurosci 2020;14:1. [PMID: 32038177 DOI: 10.3389/fncel.2020.00001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
24 Tiwari MN, Mohan S, Biala Y, Yaari Y. Differential contributions of Ca2+ -activated K+ channels and Na+ /K+ -ATPases to the generation of the slow afterhyperpolarization in CA1 pyramidal cells. Hippocampus 2018;28:338-57. [PMID: 29431274 DOI: 10.1002/hipo.22836] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
25 Giese MH, Gardner A, Hansen A, Sanguinetti MC. Molecular mechanisms of Slo2 K+ channel closure. J Physiol 2017;595:2321-36. [PMID: 27682982 DOI: 10.1113/JP273225] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 1.2] [Reference Citation Analysis]
26 Kuchenbuch M, Benquet P, Kaminska A, Roubertie A, Carme E, de Saint Martin A, Hirsch E, Dubois F, Laroche C, Barcia G, Chemaly N, Milh M, Villeneuve N, Sauleau P, Modolo J, Wendling F, Nabbout R. Quantitative analysis and EEG markers of KCNT1 epilepsy of infancy with migrating focal seizures. Epilepsia 2019;60:20-32. [DOI: 10.1111/epi.14605] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
27 Gertler TS, Cherian S, DeKeyser JM, Kearney JA, George AL Jr. KNa1.1 gain-of-function preferentially dampens excitability of murine parvalbumin-positive interneurons. Neurobiol Dis 2022;:105713. [PMID: 35346832 DOI: 10.1016/j.nbd.2022.105713] [Reference Citation Analysis]