BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Karpova EV, Laptev AI, Andreev EA, Karyakina EE, Karyakin AA. Relationship Between Sweat and Blood Lactate Levels During Exhaustive Physical Exercise. ChemElectroChem 2019;7:191-4. [DOI: 10.1002/celc.201901703] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Reference Citation Analysis]
2 Tornero-Aguilera JF, Gil-Cabrera J, Fernandez-Lucas J, Clemente-Suárez VJ. The effect of experience on the psychophysiological response and shooting performance under acute physical stress of soldiers. Physiol Behav 2021;238:113489. [PMID: 34097974 DOI: 10.1016/j.physbeh.2021.113489] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Silva CA, lv J, Yin L, Jeerapan I, Innocenzi G, Soto F, Ha Y, Wang J. Liquid Metal Based Island‐Bridge Architectures for All Printed Stretchable Electrochemical Devices. Adv Funct Mater 2020;30:2002041. [DOI: 10.1002/adfm.202002041] [Cited by in Crossref: 42] [Cited by in F6Publishing: 26] [Article Influence: 21.0] [Reference Citation Analysis]
4 Komkova MA, Eliseev AA, Poyarkov AA, Daboss EV, Evdokimov PV, Eliseev AA, Karyakin AA. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors. Biosens Bioelectron 2022;202:113970. [PMID: 35032921 DOI: 10.1016/j.bios.2022.113970] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Saha T, Fang J, Mukherjee S, Dickey MD, Velev OD. Wearable Osmotic-Capillary Patch for Prolonged Sweat Harvesting and Sensing. ACS Appl Mater Interfaces 2021;13:8071-81. [DOI: 10.1021/acsami.0c22730] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Spehar-délèze A, Anastasova S, Vadgama P. Monitoring of Lactate in Interstitial Fluid, Saliva and Sweat by Electrochemical Biosensor: The Uncertainties of Biological Interpretation. Chemosensors 2021;9:195. [DOI: 10.3390/chemosensors9080195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim YB, Shiddiky MJA. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020;145:4398-420. [PMID: 32436931 DOI: 10.1039/d0an00558d] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
8 Saldanha DJ, Cai A, Dorval Courchesne NM. The Evolving Role of Proteins in Wearable Sweat Biosensors. ACS Biomater Sci Eng 2021. [PMID: 34491052 DOI: 10.1021/acsbiomaterials.1c00699] [Reference Citation Analysis]
9 Ghaffari R, Yang DS, Kim J, Mansour A, Wright JA Jr, Model JB, Wright DE, Rogers JA, Ray TR. State of Sweat: Emerging Wearable Systems for Real-Time, Noninvasive Sweat Sensing and Analytics. ACS Sens 2021;6:2787-801. [PMID: 34351759 DOI: 10.1021/acssensors.1c01133] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 19.0] [Reference Citation Analysis]
10 Xuan X, Pérez-Ràfols C, Chen C, Cuartero M, Crespo GA. Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sens 2021;6:2763-71. [PMID: 34228919 DOI: 10.1021/acssensors.1c01009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
11 Van Hoovels K, Xuan X, Cuartero M, Gijssel M, Swarén M, Crespo GA. Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology? ACS Sens 2021;6:3496-508. [PMID: 34549938 DOI: 10.1021/acssensors.1c01403] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Karyakin AA. Glucose biosensors for clinical and personal use. Electrochemistry Communications 2021;125:106973. [DOI: 10.1016/j.elecom.2021.106973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
13 Manjakkal L, Yin L, Nathan A, Wang J, Dahiya R. Energy Autonomous Sweat-Based Wearable Systems. Adv Mater 2021;33:e2100899. [PMID: 34247412 DOI: 10.1002/adma.202100899] [Cited by in Crossref: 21] [Cited by in F6Publishing: 11] [Article Influence: 21.0] [Reference Citation Analysis]
14 Hiraka K, Tsugawa W, Asano R, Yokus MA, Ikebukuro K, Daniele MA, Sode K. Rational design of direct electron transfer type l-lactate dehydrogenase for the development of multiplexed biosensor. Biosens Bioelectron 2021;176:112933. [PMID: 33395570 DOI: 10.1016/j.bios.2020.112933] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
15 Lin S, Lefeuvre E, Tai C, Wang H. Fabrication of high-performance non-enzymatic sensor by direct electrodeposition of nanomaterials on porous screen-printed electrodes. Journal of the Taiwan Institute of Chemical Engineers 2022. [DOI: 10.1016/j.jtice.2022.104386] [Reference Citation Analysis]
16 Karpova EV, Karyakin AA. Noninvasive monitoring of diabetes and hypoxia by wearable flow-through biosensors. Current Opinion in Electrochemistry 2020;23:16-20. [DOI: 10.1016/j.coelec.2020.02.018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
17 Daboss EV, Tikhonov DV, Shcherbacheva EV, Karyakin AA. Ultrastable Lactate Biosensor Linearly Responding in Whole Sweat for Noninvasive Monitoring of Hypoxia. Anal Chem 2022. [PMID: 35687799 DOI: 10.1021/acs.analchem.2c02208] [Reference Citation Analysis]
18 Saha T, Songkakul T, Knisely CT, Yokus MA, Daniele MA, Dickey MD, Bozkurt A, Velev OD. Wireless Wearable Electrochemical Sensing Platform with Zero-Power Osmotic Sweat Extraction for Continuous Lactate Monitoring. ACS Sens 2022. [PMID: 35820167 DOI: 10.1021/acssensors.2c00830] [Reference Citation Analysis]
19 García-guzmán JJ, Pérez-ràfols C, Cuartero M, Crespo GA. Microneedle based electrochemical (Bio)Sensing: Towards decentralized and continuous health status monitoring. TrAC Trends in Analytical Chemistry 2021;135:116148. [DOI: 10.1016/j.trac.2020.116148] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 9.0] [Reference Citation Analysis]
20 Shitanda I, Mitsumoto M, Loew N, Yoshihara Y, Watanabe H, Mikawa T, Tsujimura S, Itagaki M, Motosuke M. Continuous sweat lactate monitoring system with integrated screen-printed MgO-templated carbon-lactate oxidase biosensor and microfluidic sweat collector. Electrochimica Acta 2021;368:137620. [DOI: 10.1016/j.electacta.2020.137620] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
21 Karpova EV, Karyakina EE, Karyakin AA. Wearable non-invasive monitors of diabetes and hypoxia through continuous analysis of sweat. Talanta 2020;215:120922. [DOI: 10.1016/j.talanta.2020.120922] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
22 Vaquer A, Barón E, de la Rica R. Wearable Analytical Platform with Enzyme-Modulated Dynamic Range for the Simultaneous Colorimetric Detection of Sweat Volume and Sweat Biomarkers. ACS Sens 2021;6:130-6. [PMID: 33371672 DOI: 10.1021/acssensors.0c01980] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]