BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X. Strategic Design and Fabrication of Nerve Guidance Conduits for Peripheral Nerve Regeneration. Biotechnol J 2018;13:e1700635. [PMID: 29396994 DOI: 10.1002/biot.201700635] [Cited by in Crossref: 67] [Cited by in F6Publishing: 60] [Article Influence: 16.8] [Reference Citation Analysis]
Number Citing Articles
1 Wu S, Kuss M, Qi D, Hong J, Wang H, Zhang W, Chen S, Ni S, Duan B. Development of Cryogel-Based Guidance Conduit for Peripheral Nerve Regeneration. ACS Appl Bio Mater 2019;2:4864-71. [DOI: 10.1021/acsabm.9b00626] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
2 Chighizola M, Dini T, Lenardi C, Milani P, Podestà A, Schulte C. Mechanotransduction in neuronal cell development and functioning. Biophys Rev 2019;11:701-20. [PMID: 31617079 DOI: 10.1007/s12551-019-00587-2] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 11.7] [Reference Citation Analysis]
3 Mendibil X, González-pérez F, Bazan X, Díez-ahedo R, Quintana I, Rodríguez FJ, Basnett P, Nigmatullin R, Lukasiewicz B, Roy I, Taylor CS, Glen A, Claeyssens F, Haycock JW, Schaafsma W, González E, Castro B, Duffy P, Merino S. Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend. ACS Biomater Sci Eng 2021;7:672-89. [DOI: 10.1021/acsbiomaterials.0c01476] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Carvalho CR, Costa JB, Costa L, Silva-Correia J, Moay ZK, Ng KW, Reis RL, Oliveira JM. Enhanced performance of chitosan/keratin membranes with potential application in peripheral nerve repair. Biomater Sci 2019;7:5451-66. [PMID: 31642822 DOI: 10.1039/c9bm01098j] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
5 Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021;135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
6 Sadeghianmaryan A, Naghieh S, Alizadeh Sardroud H, Yazdanpanah Z, Afzal Soltani Y, Sernaglia J, Chen X. Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering. International Journal of Biological Macromolecules 2020;164:3179-92. [DOI: 10.1016/j.ijbiomac.2020.08.180] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
7 Diez-Ahedo R, Mendibil X, Márquez-Posadas MC, Quintana I, González F, Rodríguez FJ, Zilic L, Sherborne C, Glen A, Taylor CS, Claeyssens F, Haycock JW, Schaafsma W, González E, Castro B, Merino S. UV-Casting on Methacrylated PCL for the Production of a Peripheral Nerve Implant Containing an Array of Porous Aligned Microchannels. Polymers (Basel) 2020;12:E971. [PMID: 32331241 DOI: 10.3390/polym12040971] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
8 Yang S, Tang H, Feng C, Shi J, Yang J. The Research on Multi-material 3D Vascularized Network Integrated Printing Technology. Micromachines (Basel) 2020;11:E237. [PMID: 32106448 DOI: 10.3390/mi11030237] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Zhang S, Wang J, Zheng Z, Yan J, Zhang L, Li Y, Zhang J, Li G, Wang X, Kaplan D. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair. Acta Biomater 2021;134:116-30. [PMID: 34289421 DOI: 10.1016/j.actbio.2021.07.028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
10 Sarker M, Naghieh S, Mcinnes AD, Schreyer DJ, Chen X. Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Progress in Neurobiology 2018;171:125-50. [DOI: 10.1016/j.pneurobio.2018.07.002] [Cited by in Crossref: 68] [Cited by in F6Publishing: 60] [Article Influence: 17.0] [Reference Citation Analysis]
11 Liu M, Wang D, Gu S, Tian B, Liang J, Suo Q, Zhang Z, Yang G, Zhou Y, Li S. Micro/nano materials regulate cell morphology and intercellular communication by extracellular vesicles. Acta Biomater 2021;124:130-8. [PMID: 33567350 DOI: 10.1016/j.actbio.2021.02.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Betancourt N, Chen X. Review of extrusion-based multi-material bioprinting processes. Bioprinting 2022;25:e00189. [DOI: 10.1016/j.bprint.2021.e00189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Stocco E, Porzionato A, De Rose E, Barbon S, Caro RD, Macchi V. Meniscus regeneration by 3D printing technologies: Current advances and future perspectives. J Tissue Eng 2022;13:204173142110658. [DOI: 10.1177/20417314211065860] [Reference Citation Analysis]
14 Yan L, Liu S, Qi J, Zhang Z, Zhong J, Li Q, Liu X, Zhu Q, Yao Z, Lu Y, Gu L. Three-dimensional reconstruction of internal fascicles and microvascular structures of human peripheral nerves. Int J Numer Method Biomed Eng 2019;35:e3245. [PMID: 31370097 DOI: 10.1002/cnm.3245] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Olăreț E, Drăgușin DM, Serafim A, Lungu A, Șelaru A, Dobranici A, Dinescu S, Costache M, Boerașu I, Vasile BȘ, Steinmüller-Nethl D, Iovu H, Stancu IC. Electrospinning Fabrication and Cytocompatibility Investigation of Nanodiamond Particles-Gelatin Fibrous Tubular Scaffolds for Nerve Regeneration. Polymers (Basel) 2021;13:407. [PMID: 33514051 DOI: 10.3390/polym13030407] [Reference Citation Analysis]
16 Jeon J, Lee MS, Lim J, Park S, Kim SM, Kim D, Tae G, Yang HS. Micro-grooved nerve guidance conduits combined with microfiber for rat sciatic nerve regeneration. Journal of Industrial and Engineering Chemistry 2020;90:214-23. [DOI: 10.1016/j.jiec.2020.07.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X, Liu Z, Li Y, Li G. Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater 2022;11:57-76. [PMID: 34938913 DOI: 10.1016/j.bioactmat.2021.09.030] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Lee HS, Jeon EY, Nam JJ, Park JH, Choi IC, Kim SH, Chung JJ, Lee K, Park JW, Jung Y. Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing. Acta Biomater 2022;141:219-32. [PMID: 35081432 DOI: 10.1016/j.actbio.2022.01.042] [Reference Citation Analysis]
19 Farzamfar S, Salehi M, Tavangar SM, Verdi J, Mansouri K, Ai A, Malekshahi ZV, Ai J. A novel polycaprolactone/carbon nanofiber composite as a conductive neural guidance channel: an in vitro and in vivo study. Prog Biomater 2019;8:239-48. [PMID: 31833033 DOI: 10.1007/s40204-019-00121-3] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
20 Sarker M, Naghieh S, Mcinnes AD, Ning L, Schreyer DJ, Chen X. Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments. Bioprinting 2019;14:e00045. [DOI: 10.1016/j.bprint.2019.e00045] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
21 Naghieh S, Sarker M, Abelseth E, Chen X. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials 2019;93:183-93. [DOI: 10.1016/j.jmbbm.2019.02.014] [Cited by in Crossref: 35] [Cited by in F6Publishing: 31] [Article Influence: 11.7] [Reference Citation Analysis]
22 Zhao Y, Liang Y, Ding S, Zhang K, Mao HQ, Yang Y. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials 2020;255:120164. [PMID: 32554132 DOI: 10.1016/j.biomaterials.2020.120164] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 15.5] [Reference Citation Analysis]
23 Wang J, Xiong H, Zhu T, Liu Y, Pan H, Fan C, Zhao X, Lu WW. Bioinspired Multichannel Nerve Guidance Conduit Based on Shape Memory Nanofibers for Potential Application in Peripheral Nerve Repair. ACS Nano 2020;14:12579-95. [PMID: 32786254 DOI: 10.1021/acsnano.0c03570] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 17.5] [Reference Citation Analysis]
24 Kjar A, McFarland B, Mecham K, Harward N, Huang Y. Engineering of tissue constructs using coaxial bioprinting. Bioact Mater 2021;6:460-71. [PMID: 32995673 DOI: 10.1016/j.bioactmat.2020.08.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
25 Raza C, Riaz HA, Anjum R, Shakeel NUA. Repair strategies for injured peripheral nerve: Review. Life Sci 2020;243:117308. [PMID: 31954163 DOI: 10.1016/j.lfs.2020.117308] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
26 Zhu J, Fu Q, Song L, Liu L, Zheng Z, Xu Y, Zhang Z, Karimi-maleh H. Advances in Peripheral Nerve Injury Repair with the Application of Nanomaterials. Journal of Nanomaterials 2022;2022:1-22. [DOI: 10.1155/2022/7619884] [Reference Citation Analysis]
27 Jiang Z, Li N, Zhu D, Ren L, Shao Q, Yu K, Yang G. Genetically modified cell sheets in regenerative medicine and tissue engineering. Biomaterials 2021;275:120908. [PMID: 34119885 DOI: 10.1016/j.biomaterials.2021.120908] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. Nanomaterials (Basel) 2020;10:E1609. [PMID: 32824491 DOI: 10.3390/nano10081609] [Cited by in Crossref: 23] [Cited by in F6Publishing: 14] [Article Influence: 11.5] [Reference Citation Analysis]
29 Wu S, Ni S, Jiang X, Kuss MA, Wang HJ, Duan B. Guiding Mesenchymal Stem Cells into Myelinating Schwann Cell-Like Phenotypes by Using Electrospun Core-Sheath Nanoyarns. ACS Biomater Sci Eng 2019;5:5284-94. [PMID: 33455233 DOI: 10.1021/acsbiomaterials.9b00748] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
30 Sarker MD, Naghieh S, Sharma NK, Chen X. 3D biofabrication of vascular networks for tissue regeneration: A report on recent advances. J Pharm Anal 2018;8:277-96. [PMID: 30345141 DOI: 10.1016/j.jpha.2018.08.005] [Cited by in Crossref: 75] [Cited by in F6Publishing: 54] [Article Influence: 18.8] [Reference Citation Analysis]
31 Li S, Hang Y, Ding Z, Lu Q, Lu G, Chen H, Kaplan DL. Microfluidic Silk Fibers with Aligned Hierarchical Microstructures. ACS Biomater Sci Eng 2020;6:2847-54. [PMID: 33463289 DOI: 10.1021/acsbiomaterials.0c00060] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
32 Mendibil X, Ortiz R, Viteri VS, Ugartemendia JM, Sarasua JR, Quintana I. High Throughput Manufacturing of Bio-Resorbable Micro-Porous Scaffolds Made of Poly(L-lactide-co-ε-caprolactone) by Micro-Extrusion for Soft Tissue Engineering Applications. Polymers (Basel) 2019;12:E34. [PMID: 31878300 DOI: 10.3390/polym12010034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
33 Roca FG, Santos LG, Roig MM, Medina LM, Martínez-ramos C, Pradas MM. Novel Tissue-Engineered Multimodular Hyaluronic Acid-Polylactic Acid Conduits for the Regeneration of Sciatic Nerve Defect. Biomedicines 2022;10:963. [DOI: 10.3390/biomedicines10050963] [Reference Citation Analysis]
34 Mettyas T, Barton M, Sahar MSU, Lawrence F, Sanchez-Herrero A, Shah M, St John J, Bindra R. Negative Pressure Neurogenesis: A Novel Approach to Accelerate Nerve Regeneration after Complete Peripheral Nerve Transection. Plast Reconstr Surg Glob Open 2021;9:e3568. [PMID: 34881144 DOI: 10.1097/GOX.0000000000003568] [Reference Citation Analysis]
35 Naghieh S, Sarker M, Karamooz-ravari M, Mcinnes A, Chen X. Modeling of the Mechanical Behavior of 3D Bioplotted Scaffolds Considering the Penetration in Interlocked Strands. Applied Sciences 2018;8:1422. [DOI: 10.3390/app8091422] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
36 Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022;8:267-95. [PMID: 34541401 DOI: 10.1016/j.bioactmat.2021.06.027] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 17.0] [Reference Citation Analysis]
37 Singh A, Asikainen S, Teotia AK, Shiekh PA, Huotilainen E, Qayoom I, Partanen J, Seppälä J, Kumar A. Biomimetic Photocurable Three-Dimensional Printed Nerve Guidance Channels with Aligned Cryomatrix Lumen for Peripheral Nerve Regeneration. ACS Appl Mater Interfaces 2018;10:43327-42. [DOI: 10.1021/acsami.8b11677] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 8.0] [Reference Citation Analysis]
38 Yang H, Li Q, Li L, Chen S, Zhao Y, Hu Y, Wang L, Lan X, Zhong L, Lu D. Gastrodin modified polyurethane conduit promotes nerve repair via optimizing Schwann cells function. Bioact Mater 2022;8:355-67. [PMID: 34541406 DOI: 10.1016/j.bioactmat.2021.06.020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
39 Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med 2019;13:2077-100. [PMID: 31350868 DOI: 10.1002/term.2945] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
40 Guo Z, Liang J, Poot AA, Grijpma DW, Chen H. Fabrication of poly (trimethylene carbonate)/reduced graphene oxide-graft-poly (trimethylene carbonate) composite scaffolds for nerve regeneration. Biomed Mater 2019;14:024104. [PMID: 30665200 DOI: 10.1088/1748-605X/ab0053] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
41 Scaccini L, Mezzena R, De Masi A, Gagliardi M, Gambarotta G, Cecchini M, Tonazzini I. Chitosan Micro-Grooved Membranes with Increased Asymmetry for the Improvement of the Schwann Cell Response in Nerve Regeneration. Int J Mol Sci 2021;22:7901. [PMID: 34360664 DOI: 10.3390/ijms22157901] [Reference Citation Analysis]
42 Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. Tissue Eng Part B Rev 2019;25:259-90. [PMID: 30896342 DOI: 10.1089/ten.TEB.2018.0325] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
43 Yang S, Zhu J, Lu C, Chai Y, Cao Z, Lu J, Zhang Z, Zhao H, Huang YY, Yao S, Kong X, Zhang P, Wang X. Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery. Bioact Mater 2022;8:529-44. [PMID: 34541418 DOI: 10.1016/j.bioactmat.2021.05.056] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
44 Ye W, Li H, Yu K, Xie C, Wang P, Zheng Y, Zhang P, Xiu J, Yang Y, Zhang F, He Y, Gao Q. 3D printing of gelatin methacrylate-based nerve guidance conduits with multiple channels. Materials & Design 2020;192:108757. [DOI: 10.1016/j.matdes.2020.108757] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 7.5] [Reference Citation Analysis]
45 Jin F, Li T, Yuan T, Du L, Lai C, Wu Q, Zhao Y, Sun F, Gu L, Wang T, Feng ZQ. Physiologically Self-Regulated, Fully Implantable, Battery-Free System for Peripheral Nerve Restoration. Adv Mater 2021;33:e2104175. [PMID: 34608668 DOI: 10.1002/adma.202104175] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
46 Aigner TB, Haynl C, Salehi S, O'Connor A, Scheibel T. Nerve guidance conduit design based on self-rolling tubes. Mater Today Bio 2020;5:100042. [PMID: 32159159 DOI: 10.1016/j.mtbio.2020.100042] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
47 Stewart CE, Kan CFK, Stewart BR, Sanicola HW 3rd, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020;14:25. [PMID: 32944070 DOI: 10.1186/s13036-020-00245-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Yang S, Shi J, Yang J, Feng C, Tang H. Fluid-Structure Interaction Analysis of Perfusion Process of Vascularized Channels within Hydrogel Matrix Based on Three-Dimensional Printing. Polymers (Basel) 2020;12:E1898. [PMID: 32847066 DOI: 10.3390/polym12091898] [Reference Citation Analysis]
49 Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol 2019;7:337. [PMID: 31824934 DOI: 10.3389/fbioe.2019.00337] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 14.0] [Reference Citation Analysis]
50 Hayes AJ, Melrose J. Glycans and glycosaminoglycans in neurobiology: key regulators of neuronal cell function and fate. Biochem J 2018;475:2511-45. [PMID: 30115748 DOI: 10.1042/BCJ20180283] [Cited by in Crossref: 19] [Cited by in F6Publishing: 8] [Article Influence: 4.8] [Reference Citation Analysis]
51 Sarker MD, Naghieh S, Sharma NK, Ning L, Chen X. Bioprinting of Vascularized Tissue Scaffolds: Influence of Biopolymer, Cells, Growth Factors, and Gene Delivery. J Healthc Eng 2019;2019:9156921. [PMID: 31065331 DOI: 10.1155/2019/9156921] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 6.7] [Reference Citation Analysis]
52 Behtaj S, Ekberg JAK, St John JA. Advances in Electrospun Nerve Guidance Conduits for Engineering Neural Regeneration. Pharmaceutics 2022;14:219. [DOI: 10.3390/pharmaceutics14020219] [Reference Citation Analysis]
53 Zhang M, Li L, An H, Zhang P, Liu P. Repair of Peripheral Nerve Injury Using Hydrogels Based on Self-Assembled Peptides. Gels 2021;7:152. [PMID: 34698159 DOI: 10.3390/gels7040152] [Reference Citation Analysis]
54 Lomboni DJ, Steeves A, Schock S, Bonetti L, De Nardo L, Variola F. Compounded topographical and physicochemical cueing by micro-engineered chitosan substrates on rat dorsal root ganglion neurons and human mesenchymal stem cells. Soft Matter 2021;17:5284-302. [PMID: 34075927 DOI: 10.1039/d0sm02170a] [Reference Citation Analysis]
55 Chen S, Auriat A, Li T, Stumpf T, Wylie R, Chen X, Willerth S, Derosa M, Tarizian M, Cao X, Tsai E. Advancements in Canadian Biomaterials Research in Neurotraumatic Diagnosis and Therapies. Processes 2019;7:336. [DOI: 10.3390/pr7060336] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
56 Carnes ME, Pins GD. Etching anisotropic surface topography onto fibrin microthread scaffolds for guiding myoblast alignment. J Biomed Mater Res B Appl Biomater 2020;108:2308-19. [PMID: 31967415 DOI: 10.1002/jbm.b.34566] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
57 Huang Z, Kankowski S, Ertekin E, Almog M, Nevo Z, Rochkind S, Haastert-Talini K. Modified Hyaluronic Acid-Laminin-Hydrogel as Luminal Filler for Clinically Approved Hollow Nerve Guides in a Rat Critical Defect Size Model. Int J Mol Sci 2021;22:6554. [PMID: 34207389 DOI: 10.3390/ijms22126554] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Zheng F, Derby B, Wong J. Fabrication of microvascular constructs using high resolution electrohydrodynamic inkjet printing. Biofabrication 2021;13:035006. [DOI: 10.1088/1758-5090/abd158] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
59 Zhang L, Xu L, Li G, Yang Y. Fabrication of high-strength mecobalamin loaded aligned silk fibroin scaffolds for guiding neuronal orientation. Colloids and Surfaces B: Biointerfaces 2019;173:689-97. [DOI: 10.1016/j.colsurfb.2018.10.053] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
60 Bahremandi Tolou N, Salimijazi H, Kharaziha M, Faggio G, Chierchia R, Lisi N. A three-dimensional nerve guide conduit based on graphene foam/polycaprolactone. Mater Sci Eng C Mater Biol Appl 2021;126:112110. [PMID: 34082932 DOI: 10.1016/j.msec.2021.112110] [Reference Citation Analysis]
61 Qiu B, Bessler N, Figler K, Buchholz MB, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. Adv Funct Mater 2020;30:1910250. [PMID: 34566552 DOI: 10.1002/adfm.201910250] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
62 Liaw K, Zhang Z, Kannan S. Neuronanotechnology for brain regeneration. Adv Drug Deliv Rev 2019;148:3-18. [PMID: 31668648 DOI: 10.1016/j.addr.2019.04.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
63 Tuturov AO. The role of peripheral nerve surgery in a tissue reinnervation. Chin Neurosurg J 2019;5:5. [PMID: 32922905 DOI: 10.1186/s41016-019-0151-1] [Reference Citation Analysis]
64 Chen F, Liu W, Zhang Q, Wu P, Xiao A, Zhao Y, Zhou Y, Wang Q, Chen Y, Tong Z. IL-17F depletion accelerates chitosan conduit guided peripheral nerve regeneration. Acta Neuropathol Commun 2021;9:125. [PMID: 34274026 DOI: 10.1186/s40478-021-01227-1] [Reference Citation Analysis]
65 Li H, Yu K, Zhang P, Ye Y, Shu Q. A printability study of multichannel nerve guidance conduits using projection-based three-dimensional printing. J Biomater Appl 2022;:8853282221101148. [PMID: 35549934 DOI: 10.1177/08853282221101148] [Reference Citation Analysis]
66 Huang Y, Wu W, Liu H, Chen Y, Li B, Gou Z, Li X, Gou M. 3D printing of functional nerve guide conduits. Burns Trauma 2021;9:tkab011. [PMID: 34212061 DOI: 10.1093/burnst/tkab011] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
67 Wei S, Hu Q, Ma J, Dai X, Sun Y, Han G, Meng H, Xu W, Zhang L, Ma X, Peng J, Wang Y. Acellular nerve xenografts based on supercritical extraction technology for repairing long-distance sciatic nerve defects in rats. Bioactive Materials 2022;18:300-20. [DOI: 10.1016/j.bioactmat.2022.03.014] [Reference Citation Analysis]
68 Zhu Q, Jiang M, Liu Q, Yan S, Feng L, Lan Y, Shan G, Xue W, Guo R. Enhanced healing activity of burn wound infection by a dextran-HA hydrogel enriched with sanguinarine. Biomater Sci 2018;6:2472-86. [PMID: 30066700 DOI: 10.1039/c8bm00478a] [Cited by in Crossref: 34] [Cited by in F6Publishing: 8] [Article Influence: 8.5] [Reference Citation Analysis]
69 Dietzmeyer N, Förthmann M, Grothe C, Haastert-Talini K. Modification of tubular chitosan-based peripheral nerve implants: applications for simple or more complex approaches. Neural Regen Res 2020;15:1421-31. [PMID: 31997801 DOI: 10.4103/1673-5374.271668] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
70 Mohammadi M, Ramazani Saadatabadi A, Mashayekhan S, Sanaei R. Conductive multichannel PCL/gelatin conduit with tunable mechanical and structural properties for peripheral nerve regeneration. J Appl Polym Sci 2020;137:49219. [DOI: 10.1002/app.49219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
71 Park J, Jeon J, Kim B, Lee MS, Park S, Lim J, Yi J, Lee H, Yang HS, Lee JY. Electrically Conductive Hydrogel Nerve Guidance Conduits for Peripheral Nerve Regeneration. Adv Funct Mater 2020;30:2003759. [DOI: 10.1002/adfm.202003759] [Cited by in Crossref: 40] [Cited by in F6Publishing: 26] [Article Influence: 20.0] [Reference Citation Analysis]
72 Askarzadeh N, Nazarpak MH, Mansoori K, Farokhi M, Gholami M, Mohammadi J, Mottaghitalab F. Bilayer Cylindrical Conduit Consisting of Electrospun Polycaprolactone Nanofibers and DSC Cross-Linked Sodium Alginate Hydrogel to Bridge Peripheral Nerve Gaps. Macromol Biosci 2020;20:e2000149. [PMID: 32627956 DOI: 10.1002/mabi.202000149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
73 Yang C, Huang W, Chen L, Liang N, Wang H, Lu J, Wang X, Wang T. Neural tissue engineering: the influence of scaffold surface topography and extracellular matrix microenvironment. J Mater Chem B 2021;9:567-84. [DOI: 10.1039/d0tb01605e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]