BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dees C, Zerr P, Tomcik M, Beyer C, Horn A, Akhmetshina A, Palumbo K, Reich N, Zwerina J, Sticherling M. Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 2011;63:1396-1404. [PMID: 21312186 DOI: 10.1002/art.30254] [Cited by in Crossref: 86] [Cited by in F6Publishing: 85] [Article Influence: 8.6] [Reference Citation Analysis]
Number Citing Articles
1 Krakhotkin DV, Chernylovskyi VA, Mottrie A, Greco F, Bugaev RA. New insights into the pathogenesis of Peyronie's disease: A narrative review. Chronic Dis Transl Med 2020;6:165-81. [PMID: 32885153 DOI: 10.1016/j.cdtm.2020.06.001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Györfi AH, Matei AE, Fuchs M, Liang C, Rigau AR, Hong X, Zhu H, Luber M, Bergmann C, Dees C, Ludolph I, Horch RE, Distler O, Wang J, Bengsch B, Schett G, Kunz M, Distler JHW. Engrailed 1 coordinates cytoskeletal reorganization to induce myofibroblast differentiation. J Exp Med 2021;218:e20201916. [PMID: 34259830 DOI: 10.1084/jem.20201916] [Reference Citation Analysis]
3 Distler A, Lang V, Del Vecchio T, Huang J, Zhang Y, Beyer C, Lin NY, Palumbo-Zerr K, Distler O, Schett G, Distler JH. Combined inhibition of morphogen pathways demonstrates additive antifibrotic effects and improved tolerability. Ann Rheum Dis 2014;73:1264-8. [PMID: 24445254 DOI: 10.1136/annrheumdis-2013-204221] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
4 Venalis P, Kumánovics G, Schulze‐koops H, Distler A, Dees C, Zerr P, Palumbo‐zerr K, Czirják L, Mackevic Z, Lundberg IE, Distler O, Schett G, Distler JHW. Cardiomyopathy in Murine Models of Systemic Sclerosis. Arthritis & Rheumatology 2015;67:508-16. [DOI: 10.1002/art.38942] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 4.5] [Reference Citation Analysis]
5 Denton CP, Ong VH. Targeted therapies for systemic sclerosis. Nat Rev Rheumatol 2013;9:451-64. [PMID: 23567456 DOI: 10.1038/nrrheum.2013.46] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
6 Dees C, Pötter S, Zhang Y, Bergmann C, Zhou X, Luber M, Wohlfahrt T, Karouzakis E, Ramming A, Gelse K, Yoshimura A, Jaenisch R, Distler O, Schett G, Distler JH. TGF-β-induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis. J Clin Invest 2020;130:2347-63. [PMID: 31990678 DOI: 10.1172/JCI122462] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 14.0] [Reference Citation Analysis]
7 Wang YC, Chen Q, Luo JM, Nie J, Meng QH, Shuai W, Xie H, Xia JM, Wang H. Notch1 promotes the pericyte-myofibroblast transition in idiopathic pulmonary fibrosis through the PDGFR/ROCK1 signal pathway. Exp Mol Med 2019;51:1-11. [PMID: 30902967 DOI: 10.1038/s12276-019-0228-0] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
8 Štorkánová H, Štorkánová L, Navrátilová A, Bečvář V, Hulejová H, Oreská S, Heřmánková B, Špiritović M, Bečvář R, Pavelka K, Vencovský J, Distler JHW, Šenolt L, Tomčík M. Inhibition of Hsp90 Counteracts the Established Experimental Dermal Fibrosis Induced by Bleomycin. Biomedicines 2021;9:650. [PMID: 34200311 DOI: 10.3390/biomedicines9060650] [Reference Citation Analysis]
9 Zhou X, Li H, Guo S, Wang J, Shi C, Espitia M, Guo X, Wang Q, Liu M, Assassi S, Reveille JD, Mayes MD. Associations of Multiple NOTCH4 Exonic Variants with Systemic Sclerosis. J Rheumatol 2019;46:184-9. [PMID: 30442821 DOI: 10.3899/jrheum.180094] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
10 Xu QX, Zhang WQ, Liu XZ, Yan WK, Lu L, Song SS, Wei SW, Liu YN, Kang JW, Su RW. Notch1 signaling enhances collagen expression and fibrosis in mouse uterus. Biofactors 2021. [PMID: 34320265 DOI: 10.1002/biof.1771] [Reference Citation Analysis]
11 Zhang Y, Distler JH. Therapeutic molecular targets of SSc-ILD. Journal of Scleroderma and Related Disorders 2020;5:17-30. [DOI: 10.1177/2397198319899013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
12 Stefanovic B, Manojlovic Z, Vied C, Badger CD, Stefanovic L. Discovery and evaluation of inhibitor of LARP6 as specific antifibrotic compound. Sci Rep 2019;9:326. [PMID: 30674965 DOI: 10.1038/s41598-018-36841-y] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
13 Dees C, Tomcik M, Palumbo-zerr K, Distler A, Beyer C, Lang V, Horn A, Zerr P, Zwerina J, Gelse K, Distler O, Schett G, Distler JHW. JAK-2 as a novel mediator of the profibrotic effects of transforming growth factor β in systemic sclerosis. Arthritis & Rheumatism 2012;64:3006-15. [DOI: 10.1002/art.34500] [Cited by in Crossref: 82] [Cited by in F6Publishing: 78] [Article Influence: 9.1] [Reference Citation Analysis]
14 Ho YY, Lagares D, Tager AM, Kapoor M. Fibrosis--a lethal component of systemic sclerosis. Nat Rev Rheumatol 2014;10:390-402. [PMID: 24752182 DOI: 10.1038/nrrheum.2014.53] [Cited by in Crossref: 180] [Cited by in F6Publishing: 168] [Article Influence: 25.7] [Reference Citation Analysis]
15 Formica C, Happé H, Veraar KA, Vortkamp A, Scharpfenecker M, McNeill H, Peters DJ. Four-jointed knock-out delays renal failure in an ADPKD model with kidney injury. J Pathol 2019;249:114-25. [PMID: 31038742 DOI: 10.1002/path.5286] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
16 Zmorzyński S, Styk W, Filip AA, Krasowska D. The Significance of NOTCH Pathway in the Development of Fibrosis in Systemic Sclerosis. Ann Dermatol 2019;31:365-71. [PMID: 33911613 DOI: 10.5021/ad.2019.31.4.365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Wasson CW, Ross RL, Wells R, Corinaldesi C, Georgiou IC, Riobo-Del Galdo NA, Del Galdo F. Long non-coding RNA HOTAIR induces GLI2 expression through Notch signalling in systemic sclerosis dermal fibroblasts. Arthritis Res Ther 2020;22:286. [PMID: 33303026 DOI: 10.1186/s13075-020-02376-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Saracino AM, Denton CP, Orteu CH. The molecular pathogenesis of morphoea: from genetics to future treatment targets. Br J Dermatol 2017;177:34-46. [PMID: 27553363 DOI: 10.1111/bjd.15001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
19 Hua-huy T, Dinh-xuan A. Cellular and molecular mechanisms in the pathophysiology of systemic sclerosis. Pathologie Biologie 2015;63:61-8. [DOI: 10.1016/j.patbio.2015.03.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
20 Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 2011;8:42-54. [PMID: 22025123 DOI: 10.1038/nrrheum.2011.149] [Cited by in Crossref: 224] [Cited by in F6Publishing: 210] [Article Influence: 22.4] [Reference Citation Analysis]
21 Wei H, Yin X, Tang H, Gao Y, Liu B, Wu Q, Tian Q, Hao Y, Bi H, Guo D. Hypomethylation of Notch1 DNA is associated with the occurrence of uveitis. Clin Exp Immunol 2020;201:317-27. [PMID: 32479651 DOI: 10.1111/cei.13471] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
22 Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Adv Drug Deliv Rev 2018;123:135-54. [PMID: 28757325 DOI: 10.1016/j.addr.2017.07.017] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 11.8] [Reference Citation Analysis]
23 Tomcik M, Palumbo-zerr K, Zerr P, Avouac J, Dees C, Sumova B, Distler A, Beyer C, Cerezo LA, Becvar R, Distler O, Grigorian M, Schett G, Senolt L, Distler JHW. S100A4 amplifies TGF-β-induced fibroblast activation in systemic sclerosis. Ann Rheum Dis 2015;74:1748-55. [DOI: 10.1136/annrheumdis-2013-204516] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
24 Kavian N, Servettaz A, Weill B, Batteux F. New insights into the mechanism of notch signalling in fibrosis. Open Rheumatol J 2012;6:96-102. [PMID: 22802907 DOI: 10.2174/1874312901206010096] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
25 Shang Y, Smith S, Hu X. Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell 2016;7:159-74. [PMID: 26936847 DOI: 10.1007/s13238-016-0250-0] [Cited by in Crossref: 116] [Cited by in F6Publishing: 112] [Article Influence: 23.2] [Reference Citation Analysis]
26 Distler A, Deloch L, Huang J, Dees C, Lin NY, Palumbo-Zerr K, Beyer C, Weidemann A, Distler O, Schett G, Distler JH. Inactivation of tankyrases reduces experimental fibrosis by inhibiting canonical Wnt signalling. Ann Rheum Dis 2013;72:1575-80. [PMID: 23148305 DOI: 10.1136/annrheumdis-2012-202275] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 5.9] [Reference Citation Analysis]
27 Malaab M, Renaud L, Takamura N, Zimmerman KD, da Silveira WA, Ramos PS, Haddad S, Peters-Golden M, Penke LR, Wolf B, Hardiman G, Langefeld CD, Medsger TA, Feghali-Bostwick CA. Antifibrotic factor KLF4 is repressed by the miR-10/TFAP2A/TBX5 axis in dermal fibroblasts: insights from twins discordant for systemic sclerosis. Ann Rheum Dis 2021:annrheumdis-2021-221050. [PMID: 34750102 DOI: 10.1136/annrheumdis-2021-221050] [Reference Citation Analysis]
28 Qi J, Yang Y, Hou S, Qiao Y, Wang Q, Yu H, Zhang Q, Cai T, Kijlstra A, Yang P. Increased Notch pathway activation in Behçet’s disease. Rheumatology 2014;53:810-20. [DOI: 10.1093/rheumatology/ket438] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
29 Soare A, Ramming A, Avouac J, Distler JH. Updates on animal models of systemic sclerosis. Journal of Scleroderma and Related Disorders 2016;1:266-76. [DOI: 10.5301/jsrd.5000220] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 2.6] [Reference Citation Analysis]
30 Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021;30:121-31. [PMID: 32931037 DOI: 10.1111/exd.14193] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Tschumperlin DJ, Ligresti G, Hilscher MB, Shah VH. Mechanosensing and fibrosis. J Clin Invest 2018;128:74-84. [PMID: 29293092 DOI: 10.1172/JCI93561] [Cited by in Crossref: 102] [Cited by in F6Publishing: 58] [Article Influence: 34.0] [Reference Citation Analysis]
32 Feng F, Shan L, Deng JX, Luo LL, Huang QS. Role of the Notch Signaling Pathway in Fibrosis of Denervated Skeletal Muscle. Curr Med Sci 2019;39:419-25. [PMID: 31209813 DOI: 10.1007/s11596-019-2053-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
33 Seguro Paula F, Delgado Alves J. The role of the Notch pathway in the pathogenesis of systemic sclerosis: clinical implications. Expert Rev Clin Immunol 2021;:1-11. [PMID: 34719325 DOI: 10.1080/1744666X.2021.2000391] [Reference Citation Analysis]
34 Brandstadter JD, Maillard I. Notch signalling in T cell homeostasis and differentiation. Open Biol 2019;9:190187. [PMID: 31690218 DOI: 10.1098/rsob.190187] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
35 Kim JE, Lee JH, Jeong KH, Kim GM, Kang H. Notch intracellular domain expression in various skin fibroproliferative diseases. Ann Dermatol 2014;26:332-7. [PMID: 24966632 DOI: 10.5021/ad.2014.26.3.332] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
36 Condorelli AG, Logli E, Cianfarani F, Teson M, Diociaiuti A, El Hachem M, Zambruno G, Castiglia D, Odorisio T. MicroRNA-145-5p regulates fibrotic features of recessive dystrophic epidermolysis bullosa skin fibroblasts. Br J Dermatol 2019;181:1017-27. [PMID: 30816994 DOI: 10.1111/bjd.17840] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
37 Zhou XL, Liu JC. Role of Notch signaling in the mammalian heart. Braz J Med Biol Res 2014;47:1-10. [PMID: 24345875 DOI: 10.1590/1414-431X20133177] [Cited by in Crossref: 31] [Cited by in F6Publishing: 19] [Article Influence: 3.9] [Reference Citation Analysis]
38 Zhao L, Xu Y, Tao L, Yang Y, Shen X, Li L, Luo P. Oxymatrine Inhibits Transforming Growth Factor β1 (TGF-β1)-Induced Cardiac Fibroblast-to-Myofibroblast Transformation (FMT) by Mediating the Notch Signaling Pathway In Vitro. Med Sci Monit 2018;24:6280-8. [PMID: 30196308 DOI: 10.12659/MSM.910142] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
39 Hoeft K, Kramann R. Developmental Signaling and Organ Fibrosis. Curr Pathobiol Rep 2017;5:133-43. [DOI: 10.1007/s40139-017-0136-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
40 Miyamoto S, Nakanishi M, Rosenberg DW. Suppression of colon carcinogenesis by targeting Notch signaling. Carcinogenesis. 2013;34:2415-2423. [PMID: 23729655 DOI: 10.1093/carcin/bgt191] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 2.0] [Reference Citation Analysis]
41 Tomcik M, Zerr P, Pitkowski J, Palumbo-Zerr K, Avouac J, Distler O, Becvar R, Senolt L, Schett G, Distler JH. Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann Rheum Dis 2014;73:1215-22. [PMID: 23661493 DOI: 10.1136/annrheumdis-2012-203095] [Cited by in Crossref: 51] [Cited by in F6Publishing: 49] [Article Influence: 6.4] [Reference Citation Analysis]
42 Wolff D, Radojcic V, Lafyatis R, Cinar R, Rosenstein RK, Cowen EW, Cheng GS, Sheshadri A, Bergeron A, Williams KM, Todd JL, Teshima T, Cuvelier GDE, Holler E, McCurdy SR, Jenq RR, Hanash AM, Jacobsohn D, Santomasso BD, Jain S, Ogawa Y, Steven P, Luo ZK, Dietrich-Ntoukas T, Saban D, Bilic E, Penack O, Griffith LM, Cowden M, Martin PJ, Greinix HT, Sarantopoulos S, Socie G, Blazar BR, Pidala J, Kitko CL, Couriel DR, Cutler C, Schultz KR, Pavletic SZ, Lee SJ, Paczesny S. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbid forms report. Transplant Cell Ther 2021:S2666-6367(21)00949-0. [PMID: 34217703 DOI: 10.1016/j.jtct.2021.06.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Horn A, Palumbo K, Cordazzo C, Dees C, Akhmetshina A, Tomcik M, Zerr P, Avouac J, Gusinde J, Zwerina J, Roudaut H, Traiffort E, Ruat M, Distler O, Schett G, Distler JH. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis Rheum 2012;64:2724-33. [PMID: 22354771 DOI: 10.1002/art.34444] [Cited by in Crossref: 97] [Cited by in F6Publishing: 96] [Article Influence: 10.8] [Reference Citation Analysis]
44 Beyer C, Distler JHW. Morphogen Pathways in Systemic Sclerosis. Curr Rheumatol Rep 2013;15. [DOI: 10.1007/s11926-012-0299-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
45 Baker Frost D, da Silveira W, Hazard ES, Atanelishvili I, Wilson RC, Flume J, Day KL, Oates JC, Bogatkevich GS, Feghali-Bostwick C, Hardiman G, Ramos PS. Differential DNA Methylation Landscape in Skin Fibroblasts from African Americans with Systemic Sclerosis. Genes (Basel) 2021;12:129. [PMID: 33498390 DOI: 10.3390/genes12020129] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
46 Zerr P, Palumbo-zerr K, Distler A, Tomcik M, Vollath S, Munoz LE, Beyer C, Dees C, Egberts F, Tinazzi I, Del Galdo F, Distler O, Schett G, Spriewald BM, Distler JHW. Inhibition of hedgehog signaling for the treatment of murine sclerodermatous chronic graft-versus-host disease. Blood 2012;120:2909-17. [DOI: 10.1182/blood-2012-01-403428] [Cited by in Crossref: 45] [Cited by in F6Publishing: 43] [Article Influence: 5.0] [Reference Citation Analysis]
47 Korman B. Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl Res 2019;209:77-89. [PMID: 30876809 DOI: 10.1016/j.trsl.2019.02.010] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
48 Sörensen-zender I, Rong S, Susnik N, Zender S, Pennekamp P, Melk A, Haller H, Schmitt R. Renal tubular Notch signaling triggers a prosenescent state after acute kidney injury. American Journal of Physiology-Renal Physiology 2014;306:F907-15. [DOI: 10.1152/ajprenal.00030.2014] [Cited by in Crossref: 36] [Cited by in F6Publishing: 27] [Article Influence: 5.1] [Reference Citation Analysis]
49 Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life (Basel) 2021;11:610. [PMID: 34202703 DOI: 10.3390/life11070610] [Reference Citation Analysis]
50 Shi D, Zhong Z, Wang M, Cai L, Fu D, Peng Y, Guo L, Mao H, Yu X, Li M. Identification of susceptibility locus shared by IgA nephropathy and inflammatory bowel disease in a Chinese Han population. J Hum Genet 2020;65:241-9. [PMID: 31857673 DOI: 10.1038/s10038-019-0699-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
51 Ni MM, Wang YR, Wu WW, Xia CC, Zhang YH, Xu J, Xu T, Li J. Novel Insights on Notch signaling pathways in liver fibrosis. Eur J Pharmacol 2018;826:66-74. [PMID: 29501868 DOI: 10.1016/j.ejphar.2018.02.051] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
52 Maurer B, Distler O. Emerging targeted therapies in scleroderma lung and skin fibrosis. Best Pract Res Clin Rheumatol 2011;25:843-58. [PMID: 22265265 DOI: 10.1016/j.berh.2011.11.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
53 Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2021;109:535-48. [PMID: 32557824 DOI: 10.1002/JLB.1RI0520-138R] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
54 He W, Dai C. Key Fibrogenic Signaling. Curr Pathobiol Rep 2015;3:183-92. [PMID: 25973345 DOI: 10.1007/s40139-015-0077-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
55 Tomcik M, Palumbo-zerr K, Zerr P, Sumova B, Avouac J, Dees C, Distler A, Becvar R, Distler O, Schett G, Senolt L, Distler JHW. Tribbles homologue 3 stimulates canonical TGF-β signalling to regulate fibroblast activation and tissue fibrosis. Ann Rheum Dis 2016;75:609-16. [DOI: 10.1136/annrheumdis-2014-206234] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 3.2] [Reference Citation Analysis]
56 Dees C, Distler JH. Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies? Exp Dermatol. 2013;22:710-713. [PMID: 24118232 DOI: 10.1111/exd.12255] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
57 Chen YX, Weng ZH, Zhang SL. Notch3 regulates the activation of hepatic stellate cells. World J Gastroenterol 2012; 18(12): 1397-1403 [PMID: 22493555 DOI: 10.3748/wjg.v18.i12.1397] [Cited by in CrossRef: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
58 Dorris ER, Russell J, Murphy M. Post-intubation subglottic stenosis: aetiology at the cellular and molecular level. Eur Respir Rev 2021;30:200218. [PMID: 33472959 DOI: 10.1183/16000617.0218-2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
59 Hu B, Phan SH. Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol Res 2016;108:57-64. [PMID: 27107790 DOI: 10.1016/j.phrs.2016.04.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 9.0] [Reference Citation Analysis]
60 Zmorzyński S, Wojcierowska-Litwin M, Kowal M, Michalska-Jakubus M, Styk W, Filip AA, Walecka I, Krasowska D. NOTCH3 T6746C and TP53 P72R Polymorphisms Are Associated with the Susceptibility to Diffuse Cutaneous Systemic Sclerosis. Biomed Res Int 2020;2020:8465971. [PMID: 32185220 DOI: 10.1155/2020/8465971] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
61 Mu X, Tang Y, Lu A, Takayama K, Usas A, Wang B, Weiss K, Huard J. The role of Notch signaling in muscle progenitor cell depletion and the rapid onset of histopathology in muscular dystrophy. Hum Mol Genet 2015;24:2923-37. [PMID: 25678553 DOI: 10.1093/hmg/ddv055] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 3.3] [Reference Citation Analysis]
62 Rehman M, Vodret S, Braga L, Guarnaccia C, Celsi F, Rossetti G, Martinelli V, Battini T, Long C, Vukusic K, Kocijan T, Collesi C, Ring N, Skoko N, Giacca M, Del Sal G, Confalonieri M, Raspa M, Marcello A, Myers MP, Crovella S, Carloni P, Zacchigna S. High-throughput screening discovers antifibrotic properties of haloperidol by hindering myofibroblast activation. JCI Insight 2019;4:123987. [PMID: 30996132 DOI: 10.1172/jci.insight.123987] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
63 Bayer ML, Schjerling P, Biskup E, Herchenhan A, Heinemeier KM, Doessing S, Krogsgaard M, Kjaer M. No donor age effect of human serum on collagen synthesis signaling and cell proliferation of human tendon fibroblasts. Mechanisms of Ageing and Development 2012;133:246-54. [DOI: 10.1016/j.mad.2012.02.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
64 Cheng YL, Choi Y, Sobey CG, Arumugam TV, Jo DG. Emerging roles of the γ-secretase-notch axis in inflammation. Pharmacol Ther 2015;147:80-90. [PMID: 25448038 DOI: 10.1016/j.pharmthera.2014.11.005] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
65 Zheng S, Chen Y, Guo J, Qi D, Zheng S, Zhang S, Weng Z. Recombinant adeno-associated virus-mediated transfer of shRNA against Notch3 ameliorates hepatic fibrosis in rats. Exp Biol Med (Maywood) 2013;238:600-9. [DOI: 10.1177/1535370213480698] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.4] [Reference Citation Analysis]
66 Zerr P, Palumbo-zerr K, Huang J, Tomcik M, Sumova B, Distler O, Schett G, Distler JHW. Sirt1 regulates canonical TGF-β signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis 2015;75:226-33. [DOI: 10.1136/annrheumdis-2014-205740] [Cited by in Crossref: 84] [Cited by in F6Publishing: 88] [Article Influence: 12.0] [Reference Citation Analysis]
67 Ramming A, Dees C, Distler JH. From pathogenesis to therapy--Perspective on treatment strategies in fibrotic diseases. Pharmacol Res 2015;100:93-100. [PMID: 26188266 DOI: 10.1016/j.phrs.2015.06.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
68 Gomez AH, Joshi S, Yang Y, Tune JD, Zhao MT, Yang H. Bioengineering Systems for Modulating Notch Signaling in Cardiovascular Development, Disease, and Regeneration. J Cardiovasc Dev Dis 2021;8:125. [PMID: 34677194 DOI: 10.3390/jcdd8100125] [Reference Citation Analysis]
69 Syed F, Bayat A. Notch signaling pathway in keloid disease: Enhanced fibroblast activity in a Jagged-1 peptide-dependent manner in lesional vs. extralesional fibroblasts: Role of Notch signaling in keloid disease. Wound Repair Regen 2012;20:688-706. [DOI: 10.1111/j.1524-475x.2012.00823.x] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
70 Frost J, Estivill X, Ramsay M, Tikly M. Dysregulation of the Wnt signaling pathway in South African patients with diffuse systemic sclerosis. Clin Rheumatol 2019;38:933-8. [DOI: 10.1007/s10067-018-4298-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
71 Christopoulos PF, Gjølberg TT, Krüger S, Haraldsen G, Andersen JT, Sundlisæter E. Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases. Front Immunol 2021;12:668207. [PMID: 33912195 DOI: 10.3389/fimmu.2021.668207] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
72 Batteux F, Kavian N, Servettaz A. New insights on chemically induced animal models of systemic sclerosis. Current Opinion in Rheumatology 2011;23:511-8. [DOI: 10.1097/bor.0b013e32834b1606] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
73 Beyer C, Dees C, Distler JH. Morphogen pathways as molecular targets for the treatment of fibrosis in systemic sclerosis. Arch Dermatol Res 2013;305:1-8. [PMID: 23208311 DOI: 10.1007/s00403-012-1304-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
74 Zheng YH, Li FD, Tian C, Ren HL, Du J, Li HH. Notch γ-secretase inhibitor dibenzazepine attenuates angiotensin II-induced abdominal aortic aneurysm in ApoE knockout mice by multiple mechanisms. PLoS One 2013;8:e83310. [PMID: 24358274 DOI: 10.1371/journal.pone.0083310] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.1] [Reference Citation Analysis]
75 Wasson CW, Abignano G, Hermes H, Malaab M, Ross RL, Jimenez SA, Chang HY, Feghali-Bostwick CA, Del Galdo F. Long non-coding RNA HOTAIR drives EZH2-dependent myofibroblast activation in systemic sclerosis through miRNA 34a-dependent activation of NOTCH. Ann Rheum Dis 2020;79:507-17. [PMID: 32041748 DOI: 10.1136/annrheumdis-2019-216542] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 22.0] [Reference Citation Analysis]
76 Xiao Z, Zhang J, Peng X, Dong Y, Jia L, Li H, Du J. The Notch γ-secretase inhibitor ameliorates kidney fibrosis via inhibition of TGF-β/Smad2/3 signaling pathway activation. Int J Biochem Cell Biol 2014;55:65-71. [PMID: 25150830 DOI: 10.1016/j.biocel.2014.08.009] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 7.0] [Reference Citation Analysis]
77 Li L, Zuo X, Liu D, Luo H, Zhu H. The profiles of miRNAs and lncRNAs in peripheral blood neutrophils exosomes of diffuse cutaneous systemic sclerosis. J Dermatol Sci 2020;98:88-97. [PMID: 32147195 DOI: 10.1016/j.jdermsci.2020.02.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
78 Beyer C, Distler O, Distler JH. Innovative antifibrotic therapies in systemic sclerosis. Curr Opin Rheumatol 2012;24:274-80. [PMID: 22450392 DOI: 10.1097/BOR.0b013e3283524b9a] [Cited by in Crossref: 43] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
79 Xie J, Wen J, Chen C, Luo M, Hu B, Wu D, Ye J, Lin Y, Ning L, Ning Y, Li Y. Notch 1 Is Involved in CD4+ T Cell Differentiation Into Th1 Subtype During Helicobacter pylori Infection. Front Cell Infect Microbiol 2020;10:575271. [PMID: 33224898 DOI: 10.3389/fcimb.2020.575271] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Huang J, Beyer C, Palumbo-Zerr K, Zhang Y, Ramming A, Distler A, Gelse K, Distler O, Schett G, Wollin L, Distler JH. Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis. Ann Rheum Dis 2016;75:883-90. [PMID: 25858641 DOI: 10.1136/annrheumdis-2014-207109] [Cited by in Crossref: 107] [Cited by in F6Publishing: 101] [Article Influence: 17.8] [Reference Citation Analysis]
81 Beyer C, Schramm A, Akhmetshina A, Dees C, Kireva T, Gelse K, Sonnylal S, de Crombrugghe B, Taketo MM, Distler O, Schett G, Distler JH. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis 2012;71:761-7. [PMID: 22328737 DOI: 10.1136/annrheumdis-2011-200568] [Cited by in Crossref: 135] [Cited by in F6Publishing: 127] [Article Influence: 15.0] [Reference Citation Analysis]
82 Lin NY, Distler A, Beyer C, Philipi-Schöbinger A, Breda S, Dees C, Stock M, Tomcik M, Niemeier A, Dell'Accio F, Gelse K, Mattson MP, Schett G, Distler JH. Inhibition of Notch1 promotes hedgehog signalling in a HES1-dependent manner in chondrocytes and exacerbates experimental osteoarthritis. Ann Rheum Dis 2016;75:2037-44. [PMID: 26851274 DOI: 10.1136/annrheumdis-2015-208420] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
83 De Langhe E, Lories R. Fibrogenesis, novel lessons from animal models. Semin Immunopathol. 2015;37:565-574. [PMID: 26141608 DOI: 10.1007/s00281-015-0510-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
84 Zhang K, Zhang YQ, Ai WB, Hu QT, Zhang QJ, Wan LY, Wang XL, Liu CB, Wu JF. Hes1, an important gene for activation of hepatic stellate cells, is regulated by Notch1 and TGF-β/BMP signaling. World J Gastroenterol 2015; 21(3): 878-887 [PMID: 25624721 DOI: 10.3748/wjg.v21.i3.878] [Cited by in CrossRef: 30] [Cited by in F6Publishing: 31] [Article Influence: 5.0] [Reference Citation Analysis]
85 Jeong MH, Kim HR, Park YJ, Chung KH. Akt and Notch pathways mediate polyhexamethylene guanidine phosphate-induced epithelial-mesenchymal transition via ZEB2. Toxicol Appl Pharmacol 2019;380:114691. [PMID: 31348943 DOI: 10.1016/j.taap.2019.114691] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]