BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kavian N, Servettaz A, Mongaret C, Wang A, Nicco C, Chéreau C, Grange P, Vuiblet V, Birembaut P, Diebold MD. Targeting ADAM-17/notch signaling abrogates the development of systemic sclerosis in a murine model. Arthritis Rheum. 2010;62:3477-3487. [PMID: 20583103 DOI: 10.1002/art.27626] [Cited by in Crossref: 70] [Cited by in F6Publishing: 65] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Distler A, Lang V, Del Vecchio T, Huang J, Zhang Y, Beyer C, Lin NY, Palumbo-Zerr K, Distler O, Schett G, Distler JH. Combined inhibition of morphogen pathways demonstrates additive antifibrotic effects and improved tolerability. Ann Rheum Dis 2014;73:1264-8. [PMID: 24445254 DOI: 10.1136/annrheumdis-2013-204221] [Cited by in Crossref: 26] [Cited by in F6Publishing: 27] [Article Influence: 3.7] [Reference Citation Analysis]
2 Wakabayashi N, Chartoumpekis DV, Kensler TW. Crosstalk between Nrf2 and Notch signaling. Free Radic Biol Med 2015;88:158-67. [PMID: 26003520 DOI: 10.1016/j.freeradbiomed.2015.05.017] [Cited by in Crossref: 53] [Cited by in F6Publishing: 53] [Article Influence: 8.8] [Reference Citation Analysis]
3 Dees C, Zerr P, Tomcik M, Beyer C, Horn A, Akhmetshina A, Palumbo K, Reich N, Zwerina J, Sticherling M. Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum. 2011;63:1396-1404. [PMID: 21312186 DOI: 10.1002/art.30254] [Cited by in Crossref: 86] [Cited by in F6Publishing: 85] [Article Influence: 8.6] [Reference Citation Analysis]
4 Ichida JK, Tcw J, Williams LA, Carter AC, Shi Y, Moura MT, Ziller M, Singh S, Amabile G, Bock C, Umezawa A, Rubin LL, Bradner JE, Akutsu H, Meissner A, Eggan K. Notch inhibition allows oncogene-independent generation of iPS cells. Nat Chem Biol 2014;10:632-9. [PMID: 24952596 DOI: 10.1038/nchembio.1552] [Cited by in Crossref: 50] [Cited by in F6Publishing: 42] [Article Influence: 7.1] [Reference Citation Analysis]
5 Gilbane AJ, Denton CP, Holmes AM. Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res Ther 2013;15:215. [PMID: 23796020 DOI: 10.1186/ar4230] [Cited by in Crossref: 100] [Cited by in F6Publishing: 97] [Article Influence: 14.3] [Reference Citation Analysis]
6 Beyer C, Distler O, Distler JH. Innovative antifibrotic therapies in systemic sclerosis. Curr Opin Rheumatol 2012;24:274-80. [PMID: 22450392 DOI: 10.1097/BOR.0b013e3283524b9a] [Cited by in Crossref: 43] [Cited by in F6Publishing: 14] [Article Influence: 4.8] [Reference Citation Analysis]
7 Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021;30:121-31. [PMID: 32931037 DOI: 10.1111/exd.14193] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Zhang Y, Distler JH. Therapeutic molecular targets of SSc-ILD. Journal of Scleroderma and Related Disorders 2020;5:17-30. [DOI: 10.1177/2397198319899013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
9 Zmorzyński S, Styk W, Filip AA, Krasowska D. The Significance of NOTCH Pathway in the Development of Fibrosis in Systemic Sclerosis. Ann Dermatol 2019;31:365-71. [PMID: 33911613 DOI: 10.5021/ad.2019.31.4.365] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
10 Grygiel-Górniak B, Puszczewicz M. Oxidative damage and antioxidative therapy in systemic sclerosis. Mediators Inflamm 2014;2014:389582. [PMID: 25313270 DOI: 10.1155/2014/389582] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
11 Kavian N, Marut W, Servettaz A, Laude H, Nicco C, Chéreau C, Weill B, Batteux F. Arsenic trioxide prevents murine sclerodermatous graft-versus-host disease. J Immunol 2012;188:5142-9. [PMID: 22491256 DOI: 10.4049/jimmunol.1103538] [Cited by in Crossref: 27] [Cited by in F6Publishing: 25] [Article Influence: 3.0] [Reference Citation Analysis]
12 Batteux F, Kavian N, Servettaz A. New insights on chemically induced animal models of systemic sclerosis. Current Opinion in Rheumatology 2011;23:511-8. [DOI: 10.1097/bor.0b013e32834b1606] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 3.1] [Reference Citation Analysis]
13 Condorelli AG, El Hachem M, Zambruno G, Nystrom A, Candi E, Castiglia D. Notch-ing up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway. J Biomed Sci 2021;28:36. [PMID: 33966637 DOI: 10.1186/s12929-021-00732-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Jiao Z, Wang W, Hua S, Liu M, Wang H, Wang X, Chen Y, Xu H, Lu L. Blockade of Notch Signaling Ameliorates Murine Collagen-Induced Arthritis via Suppressing Th1 and Th17 Cell Responses. The American Journal of Pathology 2014;184:1085-93. [DOI: 10.1016/j.ajpath.2013.12.010] [Cited by in Crossref: 34] [Cited by in F6Publishing: 31] [Article Influence: 4.9] [Reference Citation Analysis]
15 Maria ATJ, Maumus M, Le Quellec A, Jorgensen C, Noël D, Guilpain P. Adipose-Derived Mesenchymal Stem Cells in Autoimmune Disorders: State of the Art and Perspectives for Systemic Sclerosis. Clinic Rev Allerg Immunol 2017;52:234-59. [DOI: 10.1007/s12016-016-8552-9] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 10.4] [Reference Citation Analysis]
16 Ramming A, Dees C, Distler JH. From pathogenesis to therapy--Perspective on treatment strategies in fibrotic diseases. Pharmacol Res 2015;100:93-100. [PMID: 26188266 DOI: 10.1016/j.phrs.2015.06.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
17 Tang G, Weng Z, Song J, Chen Y. Reversal effect of Jagged1 signaling inhibition on CCl4-induced hepatic fibrosis in rats. Oncotarget 2017;8:60778-88. [PMID: 28977825 DOI: 10.18632/oncotarget.18484] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
18 Keewan E, Naser SA. The Role of Notch Signaling in Macrophages during Inflammation and Infection: Implication in Rheumatoid Arthritis? Cells 2020;9:E111. [PMID: 31906482 DOI: 10.3390/cells9010111] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
19 Yue X, Yu X, Petersen F, Riemekasten G. Recent advances in mouse models for systemic sclerosis. Autoimmun Rev 2018;17:1225-34. [PMID: 30316997 DOI: 10.1016/j.autrev.2018.06.013] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
20 Beyer C, Dees C, Distler JH. Morphogen pathways as molecular targets for the treatment of fibrosis in systemic sclerosis. Arch Dermatol Res 2013;305:1-8. [PMID: 23208311 DOI: 10.1007/s00403-012-1304-7] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
21 Jones K. Fibrotic Response to Biomaterials and all Associated Sequence of Fibrosis. Host Response to Biomaterials. Elsevier; 2015. pp. 189-237. [DOI: 10.1016/b978-0-12-800196-7.00009-8] [Cited by in Crossref: 5] [Article Influence: 0.8] [Reference Citation Analysis]
22 Hong SW, Hur W, Choi JE, Kim JH, Hwang D, Yoon SK. Role of ADAM17 in invasion and migration of CD133-expressing liver cancer stem cells after irradiation. Oncotarget. 2016; Mar 16. [Epub ahead of print]. [PMID: 26993601 DOI: 0.18632/oncotarget.8112] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Hu B, Phan SH. Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol Res 2016;108:57-64. [PMID: 27107790 DOI: 10.1016/j.phrs.2016.04.010] [Cited by in Crossref: 45] [Cited by in F6Publishing: 49] [Article Influence: 9.0] [Reference Citation Analysis]
24 Marut WK, Kavian N, Servettaz A, Nicco C, Ba LA, Doering M, Chéreau C, Jacob C, Weill B, Batteux F. The organotelluride catalyst (PHTE)₂NQ prevents HOCl-induced systemic sclerosis in mouse. J Invest Dermatol 2012;132:1125-32. [PMID: 22277946 DOI: 10.1038/jid.2011.455] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 1.6] [Reference Citation Analysis]
25 Zmorzyński S, Wojcierowska-Litwin M, Kowal M, Michalska-Jakubus M, Styk W, Filip AA, Walecka I, Krasowska D. NOTCH3 T6746C and TP53 P72R Polymorphisms Are Associated with the Susceptibility to Diffuse Cutaneous Systemic Sclerosis. Biomed Res Int 2020;2020:8465971. [PMID: 32185220 DOI: 10.1155/2020/8465971] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
26 Kavian N, Batteux F. Macro- and microvascular disease in systemic sclerosis. Vascul Pharmacol. 2015;71:16-23. [PMID: 26044180 DOI: 10.1016/j.vph.2015.05.015] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.2] [Reference Citation Analysis]
27 Kavian N, Mehlal S, Jeljeli M, Saidu NEB, Nicco C, Cerles O, Chouzenoux S, Cauvet A, Camus C, Ait-Djoudi M, Chéreau C, Kerdine-Römer S, Allanore Y, Batteux F. The Nrf2-Antioxidant Response Element Signaling Pathway Controls Fibrosis and Autoimmunity in Scleroderma. Front Immunol 2018;9:1896. [PMID: 30177933 DOI: 10.3389/fimmu.2018.01896] [Cited by in Crossref: 37] [Cited by in F6Publishing: 35] [Article Influence: 12.3] [Reference Citation Analysis]
28 Gabrielli A, Svegliati S, Moroncini G, Amico D. New insights into the role of oxidative stress in scleroderma fibrosis. Open Rheumatol J 2012;6:87-95. [PMID: 22802906 DOI: 10.2174/1874312901206010087] [Cited by in Crossref: 52] [Cited by in F6Publishing: 47] [Article Influence: 5.8] [Reference Citation Analysis]
29 He W, Dai C. Key Fibrogenic Signaling. Curr Pathobiol Rep 2015;3:183-92. [PMID: 25973345 DOI: 10.1007/s40139-015-0077-z] [Cited by in Crossref: 39] [Cited by in F6Publishing: 36] [Article Influence: 6.5] [Reference Citation Analysis]
30 Huang S, Fu D, Wan Z, Li M, Li H, Chong T. Effects of a gamma-secretase inhibitor of notch signalling on transforming growth factor β1-induced urethral fibrosis. J Cell Mol Med 2021. [PMID: 34363303 DOI: 10.1111/jcmm.16837] [Reference Citation Analysis]
31 Thuan DTB, Zayed H, Eid AH, Abou-Saleh H, Nasrallah GK, Mangoni AA, Pintus G. A Potential Link Between Oxidative Stress and Endothelial-to-Mesenchymal Transition in Systemic Sclerosis. Front Immunol 2018;9:1985. [PMID: 30283435 DOI: 10.3389/fimmu.2018.01985] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 10.0] [Reference Citation Analysis]
32 Denton CP, Ong VH. Targeted therapies for systemic sclerosis. Nat Rev Rheumatol 2013;9:451-64. [PMID: 23567456 DOI: 10.1038/nrrheum.2013.46] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
33 Matsushita T, Fujimoto M. Scleroderma: recent lessons from murine models and implications for future therapeutics. Expert Review of Dermatology 2014;8:527-39. [DOI: 10.1586/17469872.2013.835924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
34 Morin F, Kavian N, Nicco C, Cerles O, Chéreau C, Batteux F. Improvement of Sclerodermatous Graft-Versus-Host Disease in Mice by Niclosamide. J Invest Dermatol 2016;136:2158-67. [PMID: 27424318 DOI: 10.1016/j.jid.2016.06.624] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
35 Chen H, Lin C, Chen B. ADAM17/EGFR-dependent ERK activation mediates thrombin-induced CTGF expression in human lung fibroblasts. Experimental Cell Research 2018;370:39-45. [DOI: 10.1016/j.yexcr.2018.06.008] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
36 Hong SW, Hur W, Choi JE, Kim JH, Hwang D, Yoon SK. Role of ADAM17 in invasion and migration of CD133-expressing liver cancer stem cells after irradiation. Oncotarget 2016;7:23482-97. [PMID: 26993601 DOI: 10.18632/oncotarget.8112] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
37 González-Foruria I, Santulli P, Chouzenoux S, Carmona F, Chapron C, Batteux F. Dysregulation of the ADAM17/Notch signalling pathways in endometriosis: from oxidative stress to fibrosis. Mol Hum Reprod 2017;23:488-99. [PMID: 28486700 DOI: 10.1093/molehr/gax028] [Cited by in Crossref: 39] [Cited by in F6Publishing: 37] [Article Influence: 13.0] [Reference Citation Analysis]
38 Beyer C, Distler JHW. Morphogen Pathways in Systemic Sclerosis. Curr Rheumatol Rep 2013;15. [DOI: 10.1007/s11926-012-0299-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
39 Hua-huy T, Dinh-xuan A. Cellular and molecular mechanisms in the pathophysiology of systemic sclerosis. Pathologie Biologie 2015;63:61-8. [DOI: 10.1016/j.patbio.2015.03.003] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
40 Dees C, Distler JH. Canonical Wnt signalling as a key regulator of fibrogenesis - implications for targeted therapies? Exp Dermatol. 2013;22:710-713. [PMID: 24118232 DOI: 10.1111/exd.12255] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 5.1] [Reference Citation Analysis]
41 Chen YX, Weng ZH, Zhang SL. Notch3 regulates the activation of hepatic stellate cells. World J Gastroenterol 2012; 18(12): 1397-1403 [PMID: 22493555 DOI: 10.3748/wjg.v18.i12.1397] [Cited by in CrossRef: 29] [Cited by in F6Publishing: 32] [Article Influence: 3.2] [Reference Citation Analysis]
42 Mahmud-Al-Rafat A, Majumder A, Taufiqur Rahman KM, Mahedi Hasan AM, Didarul Islam KM, Taylor-Robinson AW, Billah MM. Decoding the enigma of antiviral crisis: Does one target molecule regulate all? Cytokine 2019;115:13-23. [PMID: 30616034 DOI: 10.1016/j.cyto.2018.12.008] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
43 Trojanowska M, Varga J. Pathophysiology of Fibrosis in Systemic Sclerosis. In: Varga J, Denton CP, Wigley FM, Allanore Y, Kuwana M, editors. Scleroderma. Cham: Springer International Publishing; 2017. pp. 261-80. [DOI: 10.1007/978-3-319-31407-5_18] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
44 Saracino AM, Denton CP, Orteu CH. The molecular pathogenesis of morphoea: from genetics to future treatment targets. Br J Dermatol 2017;177:34-46. [PMID: 27553363 DOI: 10.1111/bjd.15001] [Cited by in Crossref: 25] [Cited by in F6Publishing: 15] [Article Influence: 6.3] [Reference Citation Analysis]
45 Wilkinson HN, Upson SE, Banyard KL, Knight R, Mace KA, Hardman MJ. Reduced Iron in Diabetic Wounds: An Oxidative Stress-Dependent Role for STEAP3 in Extracellular Matrix Deposition and Remodeling. Journal of Investigative Dermatology 2019;139:2368-2377.e7. [DOI: 10.1016/j.jid.2019.05.014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
46 Morin F, Kavian N, Marut W, Chéreau C, Cerles O, Grange P, Weill B, Nicco C, Batteux F. Inhibition of EGFR Tyrosine Kinase by Erlotinib Prevents Sclerodermatous Graft-Versus-Host Disease in a Mouse Model. J Invest Dermatol 2015;135:2385-93. [PMID: 25938558 DOI: 10.1038/jid.2015.174] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
47 Kavian N, Servettaz A, Weill B, Batteux F. New insights into the mechanism of notch signalling in fibrosis. Open Rheumatol J 2012;6:96-102. [PMID: 22802907 DOI: 10.2174/1874312901206010096] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 4.2] [Reference Citation Analysis]
48 Chen JY, Lin CH, Chen BC. Hypoxia-induced ADAM 17 expression is mediated by RSK1-dependent C/EBPβ activation in human lung fibroblasts. Mol Immunol 2017;88:155-63. [PMID: 28646679 DOI: 10.1016/j.molimm.2017.06.029] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
49 Rosenbloom J, Mendoza FA, Jimenez SA. Strategies for anti-fibrotic therapies. Biochim Biophys Acta 2013;1832:1088-103. [PMID: 23266403 DOI: 10.1016/j.bbadis.2012.12.007] [Cited by in Crossref: 104] [Cited by in F6Publishing: 100] [Article Influence: 11.6] [Reference Citation Analysis]
50 Bhattacharyya S, Wei J, Varga J. Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 2011;8:42-54. [PMID: 22025123 DOI: 10.1038/nrrheum.2011.149] [Cited by in Crossref: 224] [Cited by in F6Publishing: 210] [Article Influence: 22.4] [Reference Citation Analysis]
51 Marut W, Kavian N, Servettaz A, Hua-Huy T, Nicco C, Chéreau C, Weill B, Dinh-Xuan AT, Batteux F. Amelioration of systemic fibrosis in mice by angiotensin II receptor blockade. Arthritis Rheum 2013;65:1367-77. [PMID: 23335130 DOI: 10.1002/art.37873] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 3.5] [Reference Citation Analysis]
52 Soare A, Ramming A, Avouac J, Distler JH. Updates on animal models of systemic sclerosis. Journal of Scleroderma and Related Disorders 2016;1:266-76. [DOI: 10.5301/jsrd.5000220] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 2.6] [Reference Citation Analysis]
53 Abdulle AE, Diercks GFH, Feelisch M, Mulder DJ, van Goor H. The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy. Front Physiol 2018;9:1177. [PMID: 30197602 DOI: 10.3389/fphys.2018.01177] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
54 Groth C, Fortini ME. Therapeutic approaches to modulating Notch signaling: current challenges and future prospects. Semin Cell Dev Biol 2012;23:465-72. [PMID: 22309842 DOI: 10.1016/j.semcdb.2012.01.016] [Cited by in Crossref: 86] [Cited by in F6Publishing: 79] [Article Influence: 9.6] [Reference Citation Analysis]
55 Feng F, Shan L, Deng JX, Luo LL, Huang QS. Role of the Notch Signaling Pathway in Fibrosis of Denervated Skeletal Muscle. Curr Med Sci 2019;39:419-25. [PMID: 31209813 DOI: 10.1007/s11596-019-2053-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
56 Lotti F, Ranieri F, Vadalà G, Zollo L, Di Pino G. Invasive Intraneural Interfaces: Foreign Body Reaction Issues. Front Neurosci 2017;11:497. [PMID: 28932181 DOI: 10.3389/fnins.2017.00497] [Cited by in Crossref: 40] [Cited by in F6Publishing: 29] [Article Influence: 10.0] [Reference Citation Analysis]
57 Varga J, Trojanowska M, Kuwana M. Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. Journal of Scleroderma and Related Disorders 2017;2:137-52. [DOI: 10.5301/jsrd.5000249] [Cited by in Crossref: 151] [Cited by in F6Publishing: 62] [Article Influence: 37.8] [Reference Citation Analysis]
58 Leask A. Targeting the jagged/notch pathway: a new treatment for fibrosis? J Cell Commun Signal 2010;4:197-8. [PMID: 21234126 DOI: 10.1007/s12079-010-0101-3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 1.4] [Reference Citation Analysis]
59 LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol 2016;418:227-41. [PMID: 27565024 DOI: 10.1016/j.ydbio.2016.08.023] [Cited by in Crossref: 50] [Cited by in F6Publishing: 45] [Article Influence: 10.0] [Reference Citation Analysis]
60 Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New Insights into Profibrotic Myofibroblast Formation in Systemic Sclerosis: When the Vascular Wall Becomes the Enemy. Life (Basel) 2021;11:610. [PMID: 34202703 DOI: 10.3390/life11070610] [Reference Citation Analysis]
61 Christopoulos PF, Gjølberg TT, Krüger S, Haraldsen G, Andersen JT, Sundlisæter E. Targeting the Notch Signaling Pathway in Chronic Inflammatory Diseases. Front Immunol 2021;12:668207. [PMID: 33912195 DOI: 10.3389/fimmu.2021.668207] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
62 Kavian N, Servettaz A, Marut W, Nicco C, Chéreau C, Weill B, Batteux F. Sunitinib inhibits the phosphorylation of platelet-derived growth factor receptor β in the skin of mice with scleroderma-like features and prevents the development of the disease. Arthritis Rheum 2012;64:1990-2000. [PMID: 22213155 DOI: 10.1002/art.34354] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
63 Malaab M, Renaud L, Takamura N, Zimmerman KD, da Silveira WA, Ramos PS, Haddad S, Peters-Golden M, Penke LR, Wolf B, Hardiman G, Langefeld CD, Medsger TA, Feghali-Bostwick CA. Antifibrotic factor KLF4 is repressed by the miR-10/TFAP2A/TBX5 axis in dermal fibroblasts: insights from twins discordant for systemic sclerosis. Ann Rheum Dis 2021:annrheumdis-2021-221050. [PMID: 34750102 DOI: 10.1136/annrheumdis-2021-221050] [Reference Citation Analysis]
64 Seguro Paula F, Delgado Alves J. The role of the Notch pathway in the pathogenesis of systemic sclerosis: clinical implications. Expert Rev Clin Immunol 2021;:1-11. [PMID: 34719325 DOI: 10.1080/1744666X.2021.2000391] [Reference Citation Analysis]
65 Kavian N, Mehlal S, Marut W, Servettaz A, Giessner C, Bourges C, Nicco C, Chéreau C, Lemaréchal H, Dutilh M, Cerles O, Guilpain P, Vuiblet V, Chouzenoux S, Galland F, Quere I, Weill B, Naquet P, Batteux F. Imbalance of the Vanin-1 Pathway in Systemic Sclerosis. J I 2016;197:3326-35. [DOI: 10.4049/jimmunol.1502511] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]