BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu YL, Huang WH. Stretchable Electrochemical Sensors for Cell and Tissue Detection. Angew Chem Int Ed Engl 2021;60:2757-67. [PMID: 32632992 DOI: 10.1002/anie.202007754] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Cao S, Zhou L, Liu C, Zhang H, Zhao Y, Zhao Y. Pillararene-based self-assemblies for electrochemical biosensors. Biosens Bioelectron 2021;181:113164. [PMID: 33744670 DOI: 10.1016/j.bios.2021.113164] [Reference Citation Analysis]
2 Zhang W, Huang G, Xu F. Engineering Biomaterials and Approaches for Mechanical Stretching of Cells in Three Dimensions. Front Bioeng Biotechnol 2020;8:589590. [PMID: 33154967 DOI: 10.3389/fbioe.2020.589590] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Hu XB, Qin Y, Fan WT, Liu YL, Huang WH. A Three-Dimensional Electrochemical Biosensor Integrated with Hydrogel Enables Real-Time Monitoring of Cells under Their In Vivo-like Microenvironment. Anal Chem 2021;93:7917-24. [PMID: 34019392 DOI: 10.1021/acs.analchem.1c00621] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Liu Z, Zhang Z, Liu Y, Mei Y, Feng E, Liu Y, Zheng T, Chen J, Zhang S, Tian Y. Raman Fiber Photometry for Understanding Mitochondrial Superoxide Burst and Extracellular Calcium Ion Influx upon Acute Hypoxia in the Brain of Freely Moving Animals. Angewandte Chemie. [DOI: 10.1002/ange.202111630] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Xiang Z, Wang H, Wan J, Miao L, Xu C, Zhao P, Guo H, Zhang H, Han M. High-density stretchable microelectrode array based on multilayer serpentine interconnections. J Micromech Microeng 2022;32:084002. [DOI: 10.1088/1361-6439/ac799d] [Reference Citation Analysis]
6 Li J, Jiang M, Su M, Tian L, Shi W, Yu C. Stretchable and Transparent Electrochemical Sensor Based on Nanostructured Au on Carbon Nanotube Networks for Real-Time Analysis of H2O2 Release from Cells. Anal Chem 2021;93:6723-30. [PMID: 33891403 DOI: 10.1021/acs.analchem.1c00336] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zhao Z, Wu S, Kim E, Chen C, Rzasa JR, Shi X, Bentley WE, Payne GF. System-Level Network Analysis of a Catechol Component for Redox Bioelectronics. ACS Appl Electron Mater 2022;4:2490-501. [DOI: 10.1021/acsaelm.2c00269] [Reference Citation Analysis]
8 Zhao Z, Ozcan EE, VanArsdale E, Li J, Kim E, Sandler AD, Kelly DL, Bentley WE, Payne GF. Mediated Electrochemical Probing: A Systems-Level Tool for Redox Biology. ACS Chem Biol 2021;16:1099-110. [PMID: 34156828 DOI: 10.1021/acschembio.1c00267] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Qin Y, Hu XB, Fan WT, Yan J, Cheng SB, Liu YL, Huang WH. A Stretchable Scaffold with Electrochemical Sensing for 3D Culture, Mechanical Loading, and Real-Time Monitoring of Cells. Adv Sci (Weinh) 2021;8:e2003738. [PMID: 34047055 DOI: 10.1002/advs.202003738] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Liang H, Wang L, Yang Y, Song Y, Wang L. A novel biosensor based on multienzyme microcapsules constructed from covalent-organic framework. Biosens Bioelectron 2021;193:113553. [PMID: 34385018 DOI: 10.1016/j.bios.2021.113553] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Fan WT, Zhao Y, Wu WT, Qin Y, Yan J, Liu YL, Huang WH. Redox Homeostasis Alteration in Endothelial Mechanotransduction Monitored by Dual Stretchable Electrochemical Sensors. Anal Chem 2022. [PMID: 35543487 DOI: 10.1021/acs.analchem.2c01227] [Reference Citation Analysis]
12 Lu C, Liao X, Fang D, Chen X. Highly Sensitive Ultrastable Electrochemical Sensor Enabled by Proton-Coupled Electron Transfer. Nano Lett 2021;21:5369-76. [PMID: 34125559 DOI: 10.1021/acs.nanolett.1c01692] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Yan J, Qin Y, Fan WT, Wu WT, Lv SW, Yan LP, Liu YL, Huang WH. Plasticizer and catalyst co-functionalized PEDOT:PSS enables stretchable electrochemical sensing of living cells. Chem Sci 2021;12:14432-40. [PMID: 34880994 DOI: 10.1039/d1sc04138j] [Reference Citation Analysis]
14 Javaid M, Haleem A, Singh RP, Rab S, Suman R. Significance of sensors for industry 4.0: Roles, capabilities, and applications. Sensors International 2021;2:100110. [DOI: 10.1016/j.sintl.2021.100110] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 10.0] [Reference Citation Analysis]
15 Gaines LGT. Historical and current usage of per- and polyfluoroalkyl substances (PFAS): A literature review. Am J Ind Med 2022. [PMID: 35614869 DOI: 10.1002/ajim.23362] [Reference Citation Analysis]
16 Xue Y, Ji W, Jiang Y, Yu P, Mao L. Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angew Chem Int Ed Engl 2021;60:23777-83. [PMID: 34410032 DOI: 10.1002/anie.202109170] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Sun M, Zhou X, Quan Y, Zhang L, Xie Y. Highly flexible elastomer microfluidic chip for single cell manipulation. Biomicrofluidics 2022;16:024104. [DOI: 10.1063/5.0086717] [Reference Citation Analysis]
18 Wang L, He E, Gao R, Wu X, Zhou A, Lu J, Zhao T, Li J, Yun Y, Li L, Ye T, Jiao Y, Wang J, Chen H, Li D, Ning X, Wu D, Peng H, Zhang Y. Designing Porous Antifouling Interfaces for High‐Power Implantable Biofuel Cell. Adv Funct Materials 2021;31:2107160. [DOI: 10.1002/adfm.202107160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Guo Y, Chen C, Feng J, Wang L, Wang J, Tang C, Sun X, Peng H. An Anti-Biofouling Flexible Fiber Biofuel Cell Working in the Brain. Small Methods 2022;:e2200142. [PMID: 35322598 DOI: 10.1002/smtd.202200142] [Reference Citation Analysis]
20 Zhou Y, Ding F, Zhang G, Tang L, Li Y. Micro-needle electrode for real-time monitoring of norepinephrine in rat central nervous system. Chinese Journal of Analytical Chemistry 2021;49:35-40. [DOI: 10.1016/j.cjac.2021.07.006] [Reference Citation Analysis]
21 Liu Y, Liu Z, Zhao F, Tian Y. Long-Term Tracking and Dynamically Quantifying of Reversible Changes of Extracellular Ca2+ in Multiple Brain Regions of Freely Moving Animals. Angew Chem Int Ed Engl 2021;60:14429-37. [PMID: 33797152 DOI: 10.1002/anie.202102833] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Niu X, Yan S, Chen J, Li H, Wang K. Enantioselective recognition of L/D-amino acids in the chiral nanochannels of a metal-organic framework. Electrochimica Acta 2022;405:139809. [DOI: 10.1016/j.electacta.2021.139809] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Zhang G, Zhang L, Zhu Q, Chen H, Yuan W, Fu J, Wang S, He L, Tao G. Self-Healable, Malleable, and Flexible Ionic Polyimine as an Environmental Sensor for Portable Exogenous Pollutant Detection. ACS Materials Lett 2022;4:136-44. [DOI: 10.1021/acsmaterialslett.1c00687] [Reference Citation Analysis]
24 Fan WT, Qin Y, Hu XB, Yan J, Wu WT, Liu YL, Huang WH. Stretchable Electrode Based on Au@Pt Nanotube Networks for Real-Time Monitoring of ROS Signaling in Endothelial Mechanotransduction. Anal Chem 2020;92:15639-46. [PMID: 33179904 DOI: 10.1021/acs.analchem.0c04015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
25 Peng M, Zhao X, Wang C, Guan L, Li K, Gu C, Lin Y. In Situ Observation of Glucose Metabolism Dynamics of Endothelial Cells in Hyperglycemia with a Stretchable Biosensor: Research Tool for Bridging Diabetes and Atherosclerosis. Anal Chem 2021;93:1043-9. [PMID: 33296175 DOI: 10.1021/acs.analchem.0c03938] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]