BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou M, Qian Y, Xie J, Zhang W, Jiang W, Xiao X, Chen S, Dai C, Cong Z, Ji Z, Shao N, Liu L, Wu Y, Liu R. Poly(2‐Oxazoline)‐Based Functional Peptide Mimics: Eradicating MRSA Infections and Persisters while Alleviating Antimicrobial Resistance. Angew Chem Int Ed 2020;59:6412-9. [DOI: 10.1002/anie.202000505] [Cited by in Crossref: 54] [Cited by in F6Publishing: 91] [Article Influence: 27.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang W, Qian Y, Lu Z, Deng S, Xiao X, Shao N, Xie J, Zou J, Ding Y, Chen M, Wei T, Yu Q, Chen H, Luan S, Liu R. Secondary amine pendent β-peptide polymers realizing antimicrobial surfaces to prevent bacterial infection of implants. Applied Materials Today 2022;29:101599. [DOI: 10.1016/j.apmt.2022.101599] [Reference Citation Analysis]
2 Hoogenboom R. The future of poly(2-oxazoline)s. European Polymer Journal 2022;179:111521. [DOI: 10.1016/j.eurpolymj.2022.111521] [Reference Citation Analysis]
3 Wang A, Duan S, Hu Y, Ding X, Xu FJ. Fluorination of Polyethylenimines for Augmentation of Antibacterial Potency via Structural Damage and Potential Dissipation of Bacterial Membranes. ACS Appl Mater Interfaces 2022. [PMID: 36130111 DOI: 10.1021/acsami.2c12692] [Reference Citation Analysis]
4 Zou J, Zhou M, Xiao X, Liu R. Advance in Hybrid Peptides Synthesis. Macromol Rapid Commun 2022;:e2200575. [PMID: 35978269 DOI: 10.1002/marc.202200575] [Reference Citation Analysis]
5 Kong Q, Li G, Zhang F, Yu T, Chen X, Jiang Q, Wang Y. N-Arylimidazoliums as Highly Selective Biomimetic Antimicrobial Agents. J Med Chem 2022. [PMID: 35930690 DOI: 10.1021/acs.jmedchem.2c00818] [Reference Citation Analysis]
6 Nie X, Gao F, You W, Chen G, Shao Q, Wang L, Huang W, Xia L, Zhang Z, Hong C, You Y. Caging Pyrophosphate Structure Blocks the Cell Wall Synthesis to Kill Bacteria without Detectable Resistance. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138373] [Reference Citation Analysis]
7 Lv Y, Zhao Y, Liu Y, Zhou Z, Shen Y, Jiang L. Self-Assembling Oligo(2-oxazoline) Organogelators for the Encapsulation and Slow Release of Bioactive Volatiles. ACS Omega. [DOI: 10.1021/acsomega.2c02905] [Reference Citation Analysis]
8 Bhattacharjee B, Mukherjee R, Haldar J. Biocompatible Hemostatic Sponge Exhibiting Broad-Spectrum Antibacterial Activity. ACS Biomater Sci Eng 2022. [PMID: 35802178 DOI: 10.1021/acsbiomaterials.2c00410] [Reference Citation Analysis]
9 Zhang W, Deng S, Zhou M, Zou J, Xie J, Xiao X, Yuan L, Ji Z, Chen S, Cui R, Luo Z, Xia G, Liu R. Host defense peptide mimicking cyclic peptoid polymers exerting strong activity against drug-resistant bacteria. Biomater Sci 2022. [PMID: 35788576 DOI: 10.1039/d2bm00587e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Zhang H, Li Q, Qi X, Li Y, Ma H, Grinholc M, Nakonieczna J, Yu B, Wang X, Zhang L. Iron-blocking antibacterial therapy with cationic heme-mimetic gallium porphyrin photosensitizer for combating antibiotic resistance and enhancing photodynamic antibacterial activity. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138261] [Reference Citation Analysis]
11 Li F, Lin L, Chi J, Wang H, Du M, Feng D, Wang L, Luo R, Chen H, Quan G, Cai J, Pan X, Wu C, Lu C. Guanidinium-rich lipopeptide functionalized bacteria-absorbing sponge as an effective trap-and-kill system for the elimination of focal bacterial infection. Acta Biomater 2022:S1742-7061(22)00327-0. [PMID: 35671875 DOI: 10.1016/j.actbio.2022.05.052] [Reference Citation Analysis]
12 Wu Y, Jiang W, Cong Z, Chen K, She Y, Zhong C, Zhang W, Chen M, Zhou M, Shao N, Xiao G, Shao X, Dai Y, Fei J, Song G, Liu R. An Effective Strategy to Develop Potent and Selective Antifungal Agents from Cell Penetrating Peptides in Tackling Drug-Resistant Invasive Fungal Infections. J Med Chem 2022. [PMID: 35535860 DOI: 10.1021/acs.jmedchem.2c00274] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Tan P, Tang Q, Xu S, Zhang Y, Fu H, Ma X. Designing Self-Assembling Chimeric Peptide Nanoparticles with High Stability for Combating Piglet Bacterial Infections. Adv Sci (Weinh) 2022;9:e2105955. [PMID: 35285170 DOI: 10.1002/advs.202105955] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
14 Rao Y, Wang J, Wang H, Wang H, Gu R, Shen J, Hao Q, Brash JL, Chen H. Optimizing the Bacteriostatic and Cytocompatibility Properties of Poly(hexamethylene guanidine) Hydrochloride (PHMG) via the Guanidine/Alkane Ratio. Biomacromolecules. [DOI: 10.1021/acs.biomac.2c00233] [Reference Citation Analysis]
15 Soria-Carrera H, Atrián-Blasco E, de la Fuente JM, Mitchell SG, Martín-Rapún R. Polyoxometalate-polypeptide nanoassemblies as peroxidase surrogates with antibiofilm properties. Nanoscale 2022;14:5999-6006. [PMID: 35348148 DOI: 10.1039/d1nr08223j] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Jiang W, Zhou M, Cong Z, Xie J, Zhang W, Chen S, Zou J, Ji Z, Shao N, Chen X, Li M, Liu R. Short Guanidinium-Functionalized Poly(2-oxazoline)s Displaying Potent Therapeutic Efficacy on Drug-Resistant Fungal Infections. Angew Chem Int Ed Engl 2022;61:e202200778. [PMID: 35182092 DOI: 10.1002/anie.202200778] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Guo M, Chang ZH, Liang E, Mitchell H, Zhou L, Yin Q, Guinn EJ, Heng JY. The effect of chain length and side chains on the solubility of peptides in water from 278.15 K to 313.15 K: A case study in glycine homopeptides and dipeptides. Journal of Molecular Liquids 2022;352:118681. [DOI: 10.1016/j.molliq.2022.118681] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Lin M, Sun J. Antimicrobial peptide–inspired antibacterial polymeric materials for biosafety. Biosafety and Health 2022. [DOI: 10.1016/j.bsheal.2022.03.009] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Bak IG, Chae C, Lee J. Synthetic Control of Helical Polyisocyanates by Living Anionic Polymerization toward Peptide Mimicry. Macromolecules 2022;55:1923-45. [DOI: 10.1021/acs.macromol.1c02160] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Zhang B, Zhang M, Lin M, Dong X, Ma X, Xu Y, Sun J. Antibacterial Copolypeptoids with Potent Activity against Drug Resistant Bacteria and Biofilms, Excellent Stability, and Recycling Property. Small 2022;:e2106936. [PMID: 35142040 DOI: 10.1002/smll.202106936] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Qian Y, Deng S, Cong Z, Zhang H, Lu Z, Shao N, Bhatti SA, Zhou C, Cheng J, Gellman SH, Liu R. Secondary Amine Pendant β-Peptide Polymers Displaying Potent Antibacterial Activity and Promising Therapeutic Potential in Treating MRSA-Induced Wound Infections and Keratitis. J Am Chem Soc 2022;144:1690-9. [PMID: 35007085 DOI: 10.1021/jacs.1c10659] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 12.0] [Reference Citation Analysis]
22 Yu L, Li K, Zhang J, Jin H, Saleem A, Song Q, Jia Q, Li P. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS Appl Bio Mater 2022. [PMID: 35072444 DOI: 10.1021/acsabm.1c01132] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
23 Haitao Y, Yifan C, Mingchao S, Shuaijuan H. A Novel Polymeric Nanohybrid Antimicrobial Engineered by Antimicrobial Peptide MccJ25 and Chitosan Nanoparticles Exerts Strong Antibacterial and Anti-Inflammatory Activities. Front Immunol 2022;12:811381. [DOI: 10.3389/fimmu.2021.811381] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
24 Wang T, Bai Z, Wei W, Hou F, Guo W, Wei A. β-Cyclodextrin-Derivative-Functionalized Graphene Oxide/Graphitic Carbon Nitride Composites with a Synergistic Effect for Rapid and Efficient Sterilization. ACS Appl Mater Interfaces 2022;14:474-83. [PMID: 34978185 DOI: 10.1021/acsami.1c24047] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
25 Zou J, Zhou M, Ji Z, Xiao X, Wu Y, Cui R, Deng S, Liu R. Controlled copolymerization of α-NCAs and α-NNTAs for preparing peptide/peptoid hybrid polymers with adjustable proteolysis. Polym Chem 2022;13:388-94. [DOI: 10.1039/d1py01413g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Chen K, Wu Y, Wu X, Zhou M, Zhou R, Wang J, Xiao X, Yuan Y, Liu R. Facile synthesis of polypeptoids bearing bulky sidechains via urea accelerated ring-opening polymerization of α-amino acid N -substituted N -carboxyanhydrides. Polym Chem 2022;13:420-6. [DOI: 10.1039/d1py01324f] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Si Z, Zheng W, Prananty D, Li J, Koh CH, Kang E, Pethe K, Chan-park MB. Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chem Sci 2022;13:345-64. [DOI: 10.1039/d1sc05835e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
28 Zhu Y, Wu S, Sun Y, Zou X, Zheng L, Duan S, Wang J, Yu B, Sui R, Xu F. Bacteria‐Targeting Photodynamic Nanoassemblies for Efficient Treatment of Multidrug‐Resistant Biofilm Infected Keratitis. Adv Funct Materials 2022;32:2111066. [DOI: 10.1002/adfm.202111066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
29 Jian Y, Jin Z, Qi S, Da X, Wang Z, Wang X, Zhou Q. An Alkynyl-Dangling Ru(II) Polypyridine Complex for Targeted Antimicrobial Photodynamic Therapy. Chemistry 2021;:e202103359. [PMID: 34890065 DOI: 10.1002/chem.202103359] [Reference Citation Analysis]
30 Soleymani Movahed F, Foo SW, Mori S, Ogawa S, Saito S. Phosphorus-Based Organocatalysis for the Dehydrative Cyclization of N-(2-Hydroxyethyl)amides into 2-Oxazolines. J Org Chem 2021. [PMID: 34882422 DOI: 10.1021/acs.joc.1c02318] [Reference Citation Analysis]
31 Zhao W, Ding M, Zhang X, Xin Z, Song L, Cheng Z, Luan S. Metabolism‐Driven Disassembly of Nanoprobes for Bacterial Detection, Imaging, and Photo‐Inactivation. Adv Funct Materials 2022;32:2107574. [DOI: 10.1002/adfm.202107574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
32 Etayash H, Alford M, Akhoundsadegh N, Drayton M, Straus SK, Hancock REW. Multifunctional Antibiotic-Host Defense Peptide Conjugate Kills Bacteria, Eradicates Biofilms, and Modulates the Innate Immune Response. J Med Chem 2021;64:16854-63. [PMID: 34784220 DOI: 10.1021/acs.jmedchem.1c01712] [Reference Citation Analysis]
33 Zhang Y, Wang D, Liu F, Sheng S, Zhang H, Li W, Li Y, Tian H. Enhancing the drug sensitivity of antibiotics on drug-resistant bacteria via the photothermal effect of FeTGNPs. J Control Release 2021;341:51-9. [PMID: 34785316 DOI: 10.1016/j.jconrel.2021.11.018] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Li H, Fu S, Liu L, Yuan X, Wang Y, Zhang C, Dong H, Satoh T. Synthesis and bioactivities of new N-terminal dipeptide mimetics with aromatic amide moiety: Broad-spectrum antibacterial activity and high antineoplastic activity. Eur J Med Chem 2021;:113977. [PMID: 34772526 DOI: 10.1016/j.ejmech.2021.113977] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Wu Y, Lin Y, Cong Z, Chen K, Xiao X, Wu X, Liu L, She Y, Liu S, Zhou R, Yin G, Shao X, Dai Y, Lin H, Liu R. Peptide Polymer‐Doped Cement Acting as an Effective Treatment of MRSA‐Infected Chronic Osteomyelitis. Adv Funct Materials 2022;32:2107942. [DOI: 10.1002/adfm.202107942] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
36 Yao Q, Qu H, Guo Y, Zhao Z, Qiao L, Wu H, Dong A, Liu Y. Capturing copper on cow dung-based biochar adsorbents for reuse in water bacterial decontamination. Colloid and Interface Science Communications 2021;45:100515. [DOI: 10.1016/j.colcom.2021.100515] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
37 Etayash H, Hancock REW. Host Defense Peptide-Mimicking Polymers and Polymeric-Brush-Tethered Host Defense Peptides: Recent Developments, Limitations, and Potential Success. Pharmaceutics 2021;13:1820. [PMID: 34834239 DOI: 10.3390/pharmaceutics13111820] [Reference Citation Analysis]
38 Gao L, Cheng J, Shen Z, Zhang G, Liu S, Hu J. Orchestrating Nitric Oxide and Carbon Monoxide Signaling Molecules for Synergistic Treatment of MRSA Infections. Angew Chem Int Ed Engl 2021. [PMID: 34694047 DOI: 10.1002/anie.202112782] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
39 Zheng M, Lin H, Zhang W, Tang S, Liu D, Cai J. Poly(l-ornithine)-Grafted Zinc Phthalocyanines as Dual-Functional Antimicrobial Agents with Intrinsic Membrane Damage and Photothermal Ablation Capacity. ACS Infect Dis 2021;7:2917-29. [PMID: 34570483 DOI: 10.1021/acsinfecdis.1c00392] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Xu L, She P, Chen L, Li S, Zhou L, Hussain Z, Liu Y, Wu Y. Repurposing Candesartan Cilexetil as Antibacterial Agent for MRSA Infection. Front Microbiol 2021;12:688772. [PMID: 34589063 DOI: 10.3389/fmicb.2021.688772] [Reference Citation Analysis]
41 Wang S, Li J, Cao Y, Gu J, Wang Y, Chen S. Non-Leaching, Rapid Bactericidal and Biocompatible Polyester Fabrics Finished with Benzophenone Terminated N-halamine. Adv Fiber Mater 2022;4:119-28. [DOI: 10.1007/s42765-021-00100-z] [Reference Citation Analysis]
42 Liu W, Zhu Y, Liu Q, Wang D, Tao Z, Zhao H, Wu H, Zhang L, Dong A. 2D Black Phosphorus-Based Cytomembrane Mimics with Stimuli-Responsive Antibacterial Action Inspired by Endotoxin-Associated Toxic Behavior. ACS Appl Mater Interfaces 2021;13:43820-9. [PMID: 34460222 DOI: 10.1021/acsami.1c15220] [Reference Citation Analysis]
43 Taggar R, Singh S, Bhalla V, Bhattacharyya MS, Sahoo DK. Deciphering the Antibacterial Role of Peptide From Bacillus subtilis subsp. spizizenii Ba49 Against Staphylococcus aureus. Front Microbiol 2021;12:708712. [PMID: 34489898 DOI: 10.3389/fmicb.2021.708712] [Reference Citation Analysis]
44 Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, Wu C, Lu C, Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021;11:2609-44. [PMID: 34589385 DOI: 10.1016/j.apsb.2021.07.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
45 Lan S, Zhang J, Li J, Guo Y, Sheng X, Dong A. An N-Halamine/Graphene Oxide-Functionalized Electrospun Polymer Membrane That Inactivates Bacteria on Contact and by Releasing Active Chlorine. Polymers (Basel) 2021;13:2784. [PMID: 34451322 DOI: 10.3390/polym13162784] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Nie X, Gao F, Wang F, Liu C, You YZ. Charge-reversal silver clusters for targeted bacterial killing. J Mater Chem B 2021;9:4006-14. [PMID: 33908582 DOI: 10.1039/d1tb00378j] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Bhattacharjee B, Ghosh S, Patra D, Haldar J. Advancements in release-active antimicrobial biomaterials: A journey from release to relief. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1745. [PMID: 34374498 DOI: 10.1002/wnan.1745] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
48 Dey R, Mukherjee S, Barman S, Haldar J. Macromolecular Nanotherapeutics and Antibiotic Adjuvants to Tackle Bacterial and Fungal Infections. Macromol Biosci 2021;:e2100182. [PMID: 34351064 DOI: 10.1002/mabi.202100182] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
49 Tan P, Fu H, Ma X. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications. Nano Today 2021;39:101229. [DOI: 10.1016/j.nantod.2021.101229] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
50 Yao Q, Borjihan Q, Qu H, Guo Y, Zhao Z, Qiao L, Li T, Dong A, Liu Y. Cow dung-derived biochars engineered as antibacterial agents for bacterial decontamination. Journal of Environmental Sciences 2021;105:33-43. [DOI: 10.1016/j.jes.2020.12.022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 8.0] [Reference Citation Analysis]
51 Wu S, Xu C, Zhu Y, Zheng L, Zhang L, Hu Y, Yu B, Wang Y, Xu F. Biofilm‐Sensitive Photodynamic Nanoparticles for Enhanced Penetration and Antibacterial Efficiency. Adv Funct Materials 2021;31:2103591. [DOI: 10.1002/adfm.202103591] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 32.0] [Reference Citation Analysis]
52 Huo S, Gao Y, Fang L, Jiang Z, Xie Q, Meng Q, Fei G, Ding S. Graphene oxide with acid-activated bacterial membrane anchoring for improving synergistic antibacterial performances. Applied Surface Science 2021;551:149444. [DOI: 10.1016/j.apsusc.2021.149444] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
53 Yao Y, Zhang A, Yuan C, Chen X, Liu Y. Recent trends on burn wound care: hydrogel dressings and scaffolds. Biomater Sci 2021;9:4523-40. [PMID: 34047308 DOI: 10.1039/d1bm00411e] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Jones JB, Liu L, Rank LA, Wetzel D, Woods EC, Biok N, Anderson SE, Lee MR, Liu R, Huth S, Sandhu BK, Gellman SH, McBride SM. Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of Clostridioides difficile. ACS Infect Dis 2021;7:1236-47. [PMID: 33739823 DOI: 10.1021/acsinfecdis.0c00843] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Leong J, Yang C, Tan J, Tan BQ, Hor S, Hedrick JL, Yang YY. Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect. Biomater Sci 2020;8:6920-9. [PMID: 32959808 DOI: 10.1039/d0bm00752h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
56 Zhang B, Li M, Lin M, Yang X, Sun J. A convenient approach for antibacterial polypeptoids featuring sulfonium and oligo(ethylene glycol) subunits. Biomater Sci 2020;8:6969-77. [PMID: 33150880 DOI: 10.1039/d0bm01384f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
57 Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2020;8:6867-82. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
58 Hall TJ, Villapún VM, Addison O, Webber MA, Lowther M, Louth SET, Mountcastle SE, Brunet MY, Cox SC. A call for action to the biomaterial community to tackle antimicrobial resistance. Biomater Sci 2020;8:4951-74. [PMID: 32820747 DOI: 10.1039/d0bm01160f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
59 Xiao X, Zhang S, Chen S, Qian Y, Xie J, Cong Z, Zhang D, Zou J, Zhang W, Ji Z, Cui R, Qiao Z, Jiang W, Dai Y, Wang Y, Shao X, Sun Y, Xia J, Fei J, Liu R. An alpha/beta chimeric peptide molecular brush for eradicating MRSA biofilms and persister cells to mitigate antimicrobial resistance. Biomater Sci 2020;8:6883-9. [PMID: 32960197 DOI: 10.1039/d0bm01211d] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
60 Cheng J, Gan G, Shen Z, Gao L, Zhang G, Hu J. Red Light‐Triggered Intracellular Carbon Monoxide Release Enables Selective Eradication of MRSA Infection. Angew Chem 2021;133:13625-32. [DOI: 10.1002/ange.202104024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
61 Cheng J, Gan G, Shen Z, Gao L, Zhang G, Hu J. Red Light-Triggered Intracellular Carbon Monoxide Release Enables Selective Eradication of MRSA Infection. Angew Chem Int Ed Engl 2021;60:13513-20. [PMID: 33829616 DOI: 10.1002/anie.202104024] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
62 Duan Y, He K, Zhang G, Hu J. Photoresponsive Micelles Enabling Codelivery of Nitric Oxide and Formaldehyde for Combinatorial Antibacterial Applications. Biomacromolecules 2021;22:2160-70. [PMID: 33884862 DOI: 10.1021/acs.biomac.1c00251] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
63 Riduan SN, Armugam A, Zhang Y. Antibiotic resistance mitigation: the development of alternative general strategies. J Mater Chem B 2020;8:6317-21. [PMID: 32597439 DOI: 10.1039/d0tb01241f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
64 Zhao Y, Yu Y, Gao F, Wang Z, Chen W, Chen C, Yang J, Yao Y, Du J, Zhao C, Wu Y. A highly accessible copper single-atom catalyst for wound antibacterial application. Nano Res 2021;14:4808-13. [DOI: 10.1007/s12274-021-3432-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
65 Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021;7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Cited by in Crossref: 23] [Cited by in F6Publishing: 12] [Article Influence: 23.0] [Reference Citation Analysis]
66 Monsen PJ, Luzzio FA. Chemoenzymatic route to stereodefined 2-(azidophenyl)oxazolines for click chemistry. Tetrahedron Lett 2021;63:152717. [PMID: 33716327 DOI: 10.1016/j.tetlet.2020.152717] [Reference Citation Analysis]
67 Lin C, Wang Y, Le M, Chen KF, Jia YG. Recent Progress in Bile Acid-Based Antimicrobials. Bioconjug Chem 2021;32:395-410. [PMID: 33683873 DOI: 10.1021/acs.bioconjchem.0c00642] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Bi Y, Xia G, Shi C, Wan J, Liu L, Chen Y, Wu Y, Zhang W, Zhou M, He H, Liu R. Therapeutic strategies against bacterial biofilms. Fundamental Research 2021;1:193-212. [DOI: 10.1016/j.fmre.2021.02.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
69 Wang A, Duan S, Ding X, Zhao N, Hu Y, Ding X, Xu F. Bioswitchable Antibacterial Coatings Enable Self‐Sterilization of Implantable Healthcare Dressings. Adv Funct Mater 2021;31:2011165. [DOI: 10.1002/adfm.202011165] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 12.0] [Reference Citation Analysis]
70 Liu L, Courtney KC, Huth SW, Rank LA, Weisblum B, Chapman ER, Gellman SH. Beyond Amphiphilic Balance: Changing Subunit Stereochemistry Alters the Pore-Forming Activity of Nylon-3 Polymers. J Am Chem Soc 2021;143:3219-30. [PMID: 33611913 DOI: 10.1021/jacs.0c12731] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
71 Zhong C, Zhang F, Yao J, Zhu Y, Zhu N, Zhang Y, Liu H, Gou S, Ni J. Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. Biochem Pharmacol 2021;186:114470. [PMID: 33610592 DOI: 10.1016/j.bcp.2021.114470] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Bai S, Wang J, Yang K, Zhou C, Xu Y, Song J, Gu Y, Chen Z, Wang M, Shoen C, Andrade B, Cynamon M, Zhou K, Wang H, Cai Q, Oldfield E, Zimmerman SC, Bai Y, Feng X. A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. Sci Adv 2021;7:eabc9917. [PMID: 33571116 DOI: 10.1126/sciadv.abc9917] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
73 Pranantyo D, Raju C, Si Z, Xu X, Pethe K, Kang ET, Chan-Park MB. Nontoxic Antimicrobial Cationic Peptide Nanoconstructs with Bacteria-Displaceable Polymeric Counteranions. Nano Lett 2021;21:899-906. [PMID: 33448223 DOI: 10.1021/acs.nanolett.0c03261] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Rank LA, Agrawal A, Liu L, Zhu Y, Mustafi M, Weisshaar JC, Gellman SH. Diverse Impacts on Prokaryotic and Eukaryotic Membrane Activities from Hydrophobic Subunit Variation Among Nylon-3 Copolymers. ACS Chem Biol 2021;16:176-84. [PMID: 33305582 DOI: 10.1021/acschembio.0c00855] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
75 Si Z, Hou Z, Vikhe YS, Thappeta KRV, Marimuthu K, De PP, Ng OT, Li P, Zhu Y, Pethe K, Chan-Park MB. Antimicrobial Effect of a Novel Chitosan Derivative and Its Synergistic Effect with Antibiotics. ACS Appl Mater Interfaces 2021;13:3237-45. [PMID: 33405504 DOI: 10.1021/acsami.0c20881] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
76 Pranantyo D, Kang E, Chan-park MB. Smart nanomicelles with bacterial infection-responsive disassembly for selective antimicrobial applications. Biomater Sci 2021;9:1627-38. [DOI: 10.1039/d0bm01382j] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
77 Shi S, Quarta N, Zhang H, Lu Z, Hof M, Šachl R, Liu R, Hoernke M. Hidden complexity in membrane permeabilization behavior of antimicrobial polycations. Phys Chem Chem Phys 2021;23:1475-88. [DOI: 10.1039/d0cp05651k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
78 Zhang W, Wu Y, Liu L, Xiao X, Cong Z, Shao N, Qiao Z, Chen K, Liu S, Zhang H, Ji Z, Shao X, Dai Y, He H, Xia J, Fei J, Liu R. The membrane-targeting mechanism of host defense peptides inspiring the design of polypeptide-conjugated gold nanoparticles exhibiting effective antibacterial activity against methicillin-resistant Staphylococcus aureus. J Mater Chem B 2021;9:5092-101. [PMID: 34128037 DOI: 10.1039/d1tb00533b] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Zhong C, Zhang F, Zhu N, Zhu Y, Yao J, Gou S, Xie J, Ni J. Ultra-short lipopeptides against gram-positive bacteria while alleviating antimicrobial resistance. Eur J Med Chem 2021;212:113138. [PMID: 33422980 DOI: 10.1016/j.ejmech.2020.113138] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
80 Dai C, Zhou M, Jiang W, Xiao X, Zou J, Qian Y, Cong Z, Ji Z, Liu L, Xie J, Qiao Z, Liu R. Breaking or following the membrane-targeting mechanism: Exploring the antibacterial mechanism of host defense peptide mimicking poly(2-oxazoline)s. Journal of Materials Science & Technology 2020;59:220-6. [DOI: 10.1016/j.jmst.2020.06.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
81 Qiu H, Si Z, Luo Y, Feng P, Wu X, Hou W, Zhu Y, Chan-Park MB, Xu L, Huang D. The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Front Bioeng Biotechnol 2020;8:910. [PMID: 33262975 DOI: 10.3389/fbioe.2020.00910] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
82 Zhou M, Jiang W, Xie J, Zhang W, Ji Z, Zou J, Cong Z, Xiao X, Gu J, Liu R. Peptide-Mimicking Poly(2-oxazoline)s Displaying Potent Antimicrobial Properties. ChemMedChem 2021;16:309-15. [PMID: 32926562 DOI: 10.1002/cmdc.202000530] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
83 Etayash H, Qian Y, Pletzer D, Zhang Q, Xie J, Cui R, Dai C, Ma P, Qi F, Liu R, Hancock REW. Host Defense Peptide-Mimicking Amphiphilic β-Peptide Polymer (Bu:DM) Exhibiting Anti-Biofilm, Immunomodulatory, and in Vivo Anti-Infective Activity. J Med Chem 2020;63:12921-8. [PMID: 33126797 DOI: 10.1021/acs.jmedchem.0c01321] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
84 Zhang D, Chen Q, Shi C, Chen M, Ma K, Wan J, Liu R. Dealing with the Foreign‐Body Response to Implanted Biomaterials: Strategies and Applications of New Materials. Adv Funct Mater 2021;31:2007226. [DOI: 10.1002/adfm.202007226] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 18.5] [Reference Citation Analysis]
85 Qian Y, Deng S, Lu Z, She Y, Xie J, Cong Z, Zhang W, Liu R. Using In Vivo Assessment on Host Defense Peptide Mimicking Polymer-Modified Surfaces for Combating Implant Infections. ACS Appl Bio Mater 2021;4:3811-29. [DOI: 10.1021/acsabm.0c01066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Scapin S, Formaggio F, Glisenti A, Biondi B, Scocchi M, Benincasa M, Peggion C. Sustainable, Site-Specific Linkage of Antimicrobial Peptides to Cotton Textiles. Macromol Biosci 2020;20:e2000199. [PMID: 32852141 DOI: 10.1002/mabi.202000199] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
87 Huang T, Qian Y, Fu X, Huang S, Li Y, Zhou C. De Novo Design of Triblock Amphiphilic Short Antimicrobial Peptides. ACS Appl Polym Mater 2020;2:3988-92. [DOI: 10.1021/acsapm.0c00640] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
88 Hu D, Zou L, Gao Y, Jin Q, Ji J. Emerging nanobiomaterials against bacterial infections in postantibiotic era. View 2020;1:20200014. [DOI: 10.1002/viw.20200014] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
89 Wu Y, Zhang W, Zhou R, Chen Q, Xie C, Xiang H, Sun B, Zhu M, Liu R. Facile Synthesis of High Molecular Weight Polypeptides via Fast and Moisture Insensitive Polymerization of α-Amino Acid N-Carboxyanhydrides. Chin J Polym Sci 2020;38:1131-40. [DOI: 10.1007/s10118-020-2471-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
90 Xu J, Pu L, Ma J, Kumar SK, Duan H. Antibacterial properties of synthesized cyclic and linear cationic copolymers. Polym Chem 2020;11:6632-9. [DOI: 10.1039/d0py00755b] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
91 Wu Y, Xia G, Zhang W, Chen K, Bi Y, Liu S, Zhang W, Liu R. Structural design and antimicrobial properties of polypeptides and saccharide–polypeptide conjugates. J Mater Chem B 2020;8:9173-96. [DOI: 10.1039/d0tb01916j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]