BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ou W, Han F, Hu X, Chen H, Huang P. Iridium-Catalyzed Reductive Alkylations of Secondary Amides. Angew Chem Int Ed 2018;57:11354-8. [DOI: 10.1002/anie.201806747] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Donnelly LJ, Berthet J, Cantat T. Selective Reduction of Secondary Amides to Imines Catalysed by Schwartz's Reagent**. Angew Chem Int Ed 2022;61. [DOI: 10.1002/anie.202206170] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Wu DP, Ou W, Huang PQ. Ir-Catalyzed Chemoselective Reductive Condensation Reactions of Tertiary Amides with Active Methylene Compounds. Org Lett 2022. [PMID: 35849542 DOI: 10.1021/acs.orglett.2c02045] [Reference Citation Analysis]
3 Zhao F, Jiang F, Wang X. Deoxygenative alkylation of tertiary amides using alkyl iodides under visible light. Sci China Chem . [DOI: 10.1007/s11426-022-1331-y] [Reference Citation Analysis]
4 Donnelly LJ, Berthet J, Cantat T. Selective Reduction of Secondary Amides to Imines Catalysed by Schwartz's Reagent**. Angewandte Chemie. [DOI: 10.1002/ange.202206170] [Reference Citation Analysis]
5 Agrawal T, Perez-Morales KD, Cort JA, Sieber JD. Asymmetric Synthesis of Propargylic α-Stereogenic Tertiary Amines by Reductive Alkynylation of Tertiary Amides Using Ir/Cu Tandem Catalysis. J Org Chem 2022. [PMID: 35435681 DOI: 10.1021/acs.joc.2c00131] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ou W, Qiu C, Su C. Photo- and electro-catalytic deuteration of feedstock chemicals and pharmaceuticals: A review. Chinese Journal of Catalysis 2022;43:956-70. [DOI: 10.1016/s1872-2067(21)63928-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
7 Biallas P, Yamazaki K, Dixon DJ. Difluoroalkylation of Tertiary Amides and Lactams by an Iridium-Catalyzed Reductive Reformatsky Reaction. Org Lett 2022. [PMID: 35258311 DOI: 10.1021/acs.orglett.2c00438] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 He Y, Wang Y, Li SJ, Lan Y, Wang X. Deoxygenative Cross-Coupling of Aromatic Amides with Polyfluoroarenes. Angew Chem Int Ed Engl 2022;61:e202115497. [PMID: 35014163 DOI: 10.1002/anie.202115497] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 He Y, Wang Y, Li S, Lan Y, Wang X. Deoxygenative Cross‐Coupling of Aromatic Amides with Polyfluoroarenes. Angewandte Chemie. [DOI: 10.1002/ange.202115497] [Reference Citation Analysis]
10 Chen J, Lim JW, Ong DY, Chiba S. Iterative addition of carbon nucleophiles to N,N-dialkyl carboxamides for synthesis of α-tertiary amines. Chem Sci 2021;13:99-104. [PMID: 35059156 DOI: 10.1039/d1sc05876b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
11 Murugesan K, Alenad AM, Alshammari AS, Sohail M, Jagadeesh RV. Reductive N-alkylation of primary amides using nickel-nanoparticles. Tetrahedron 2021;102:132526. [DOI: 10.1016/j.tet.2021.132526] [Reference Citation Analysis]
12 Li Z, Zhao F, Ou W, Huang P, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem 2021;133:26808-13. [DOI: 10.1002/ange.202111029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
13 Li Z, Zhao F, Ou W, Huang PQ, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021. [PMID: 34596947 DOI: 10.1002/anie.202111029] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
14 Lipshultz JM, Radosevich AT. Uniting Amide Synthesis and Activation by PIII/PV-Catalyzed Serial Condensation: Three-Component Assembly of 2-Amidopyridines. J Am Chem Soc 2021;143:14487-94. [PMID: 34478308 DOI: 10.1021/jacs.1c07608] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
15 Jiao J, Wang X. Merging Electron Transfer with 1,2-Metalate Rearrangement: Deoxygenative Arylation of Aromatic Amides with Arylboronic Esters. Angew Chem Int Ed Engl 2021;60:17088-93. [PMID: 33988285 DOI: 10.1002/anie.202104359] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
16 Jiao J, Wang X. Merging Electron Transfer with 1,2‐Metalate Rearrangement: Deoxygenative Arylation of Aromatic Amides with Arylboronic Esters. Angew Chem 2021;133:17225-30. [DOI: 10.1002/ange.202104359] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Katahara S, Sugiyama Y, Yamane M, Komiya Y, Sato T, Chida N. Five-Step Total Synthesis of (±)-Aspidospermidine by a Lactam Strategy via an Azomethine Ylide. Org Lett 2021;23:3058-63. [DOI: 10.1021/acs.orglett.1c00735] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
18 Chen DH, Sun WT, Zhu CJ, Lu GS, Wu DP, Wang AE, Huang PQ. Enantioselective Reductive Cyanation and Phosphonylation of Secondary Amides by Iridium and Chiral Thiourea Sequential Catalysis. Angew Chem Int Ed Engl 2021;60:8827-31. [PMID: 33484032 DOI: 10.1002/anie.202015898] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 22.0] [Reference Citation Analysis]
19 Chen D, Sun W, Zhu C, Lu G, Wu D, Wang A, Huang P. Enantioselective Reductive Cyanation and Phosphonylation of Secondary Amides by Iridium and Chiral Thiourea Sequential Catalysis. Angew Chem 2021;133:8909-13. [DOI: 10.1002/ange.202015898] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
20 Hu XN, Wu DP, Xu YP, Huang PQ. Organocatalytic Asymmetric Synthesis of an Advanced Intermediate of (+)-Sarain A. Chemistry 2021;27:609-13. [PMID: 33044771 DOI: 10.1002/chem.202004261] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 He Y, Wang X. Synthesis of Cyclic Amidines by Iridium-Catalyzed Deoxygenative Reduction of Lactams and Tandem Reaction with Sulfonyl Azides. Org Lett 2021;23:225-30. [DOI: 10.1021/acs.orglett.0c03953] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
22 Ong DY, Chen J, Chiba S. Reductive Functionalization of Carboxamides: A Recent Update. BCSJ 2020;93:1339-49. [DOI: 10.1246/bcsj.20200182] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
23 Luo S, Huang X, Guo L, Huang P. Catalytic Asymmetric Total Synthesis of Macrocyclic Marine Natural Product (–)‐Haliclonin A . Chin J Chem 2020;38:1723-36. [DOI: 10.1002/cjoc.202000291] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
24 Soda Y, Sugiyama Y, Yoritate M, Tajima H, Shibuya K, Ogihara C, Oishi T, Sato T, Chida N. Unified Total Synthesis of Pentacyclic Stemoamide-type Alkaloids. Org Lett 2020;22:7502-7. [DOI: 10.1021/acs.orglett.0c02697] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
25 Czerwiński PJ, Furman B. A Long-Sought Reactivity of a Sodium Hydride. Trends in Chemistry 2020;2:782-4. [DOI: 10.1016/j.trechm.2020.07.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
26 Matheau-raven D, Gabriel P, Leitch JA, Almehmadi YA, Yamazaki K, Dixon DJ. Catalytic Reductive Functionalization of Tertiary Amides using Vaska’s Complex: Synthesis of Complex Tertiary Amine Building Blocks and Natural Products. ACS Catal 2020;10:8880-97. [DOI: 10.1021/acscatal.0c02377] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 23.5] [Reference Citation Analysis]
27 Ong DY, Fan D, Dixon DJ, Chiba S. Transition-Metal-Free Reductive Functionalization of Tertiary Carboxamides and Lactams for α-Branched Amine Synthesis. Angew Chem Int Ed Engl 2020;59:11903-7. [PMID: 32329555 DOI: 10.1002/anie.202004272] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 13.5] [Reference Citation Analysis]
28 Ong DY, Fan D, Dixon DJ, Chiba S. Transition‐Metal‐Free Reductive Functionalization of Tertiary Carboxamides and Lactams for α‐Branched Amine Synthesis. Angew Chem 2020;132:12001-5. [DOI: 10.1002/ange.202004272] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
29 Chen H, Chen D, Huang P. Ni-catalyzed direct alcoholysis of N-acylpyrrole-type tertiary amides under mild conditions. Sci China Chem 2020;63:370-6. [DOI: 10.1007/s11426-019-9665-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
30 Ou W, Lu G, An D, Han F, Huang P. Two-Step Catalytic Transformation of N -Benzyllactams to Alkaloids (±)-Solenopsin, (±)-Solenopsin A, and (+)-Julifloridine: Two-Step Catalytic Transformation of N -Benzyllactams to Alkaloids (±)-Solenopsin, (±)-Solenopsin A, and (+)-Julifloridine. Eur J Org Chem 2020;2020:52-6. [DOI: 10.1002/ejoc.201901752] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
31 Liu Y, Zhu C, Yu C, Wang A, Huang P. Tf 2 O-Mediated Intermolecular Coupling of Secondary Amides with Enamines or Ketones: A Versatile and Direct Access to β-Enaminones: Tf 2 O-Mediated Intermolecular Coupling of Secondary Amides with Enamines or Ketones: A Versatile and Direct Access to β-Enaminones. Eur J Org Chem 2019;2019:7169-74. [DOI: 10.1002/ejoc.201901354] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
32 Ou W, Huang P. Amides as surrogates of aldehydes for C-C bond formation: amide-based direct Knoevenagel-type condensation reaction and related reactions. Sci China Chem 2020;63:11-5. [DOI: 10.1007/s11426-019-9586-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
33 Niu Z, Li L, Liu X, Liang Y. Transition‐Metal‐Free Alkylation/Arylation of Benzoxazole via Tf 2 O‐Activated‐Amide. Adv Synth Catal 2019;361:5217-22. [DOI: 10.1002/adsc.201901078] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
34 Takahashi Y, Sato T, Chida N. Iridium-catalyzed Reductive Nucleophilic Addition to Tertiary Amides. Chem Lett 2019;48:1138-41. [DOI: 10.1246/cl.190467] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
35 Xu Z, Wang XG, Wei YH, Ji KL, Zheng JF, Ye JL, Huang PQ. Organocatalytic, Enantioselective Reductive Bis-functionalization of Secondary Amides: One-Pot Construction of Chiral 2,2-Disubstituted 3-Iminoindoline. Org Lett 2019;21:7587-91. [PMID: 31479277 DOI: 10.1021/acs.orglett.9b02862] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
36 Gabriel P, Gregory AW, Dixon DJ. Iridium-Catalyzed Aza-Spirocyclization of Indole-Tethered Amides: An Interrupted Pictet–Spengler Reaction. Org Lett 2019;21:6658-62. [DOI: 10.1021/acs.orglett.9b02194] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
37 Kolobova E, Mäki-arvela P, Pestryakov A, Pakrieva E, Pascual L, Smeds A, Rahkila J, Sandberg T, Peltonen J, Murzin DY. Reductive Amination of Ketones with Benzylamine Over Gold Supported on Different Oxides. Catal Lett 2019;149:3432-46. [DOI: 10.1007/s10562-019-02917-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
38 Wang S, Huang P. Cross‐Coupling of Secondary Amides with Tertiary Amides: The Use of Tertiary Amides as Surrogates of Alkyl Carbanions for Ketone Synthesis. Chin J Chem 2019;37:887-91. [DOI: 10.1002/cjoc.201900215] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
39 Chen H, Huang YH, Ye JL, Huang PQ. Double Addition of Alkynyllithium Reagents to Amides/Lactams: A Direct and Flexible Synthesis of 3-Amino-1,4-diynes Bearing an Aza-Quaternary Carbon Center. J Org Chem 2019;84:9270-81. [PMID: 31287315 DOI: 10.1021/acs.joc.9b01416] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
40 Geng H, Huang P. Ketone Synthesis by Direct, Orthogonal Chemoselective Hydroacylation of Alkenes with Amides: Use of Alkenes as Surrogates of Alkyl Carbanions. Chin J Chem 2019;37:811-6. [DOI: 10.1002/cjoc.201900252] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
41 Chen TT, Wang AE, Huang PQ. Chemoselective Synthesis of α-Amino-α-cyanophosphonates by Reductive Gem-Cyanation-Phosphonylation of Secondary Amides. Org Lett 2019;21:3808-12. [PMID: 31059269 DOI: 10.1021/acs.orglett.9b01257] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
42 Hiraoka S, Matsumoto T, Matsuzaka K, Sato T, Chida N. Approach to Fully Substituted Cyclic Nitrones from N ‐Hydroxylactam Derivatives: Development and Application to the Total Synthesis of Cylindricine C. Angew Chem 2019;131:4425-9. [DOI: 10.1002/ange.201901049] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
43 Yang Z, Lu G, Ye J, Huang P. Ir-catalyzed chemoselective reduction of β-amido esters: A versatile approach to β-enamino esters. Tetrahedron 2019;75:1624-31. [DOI: 10.1016/j.tet.2018.12.024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
44 Yamamoto S, Komiya Y, Kobayashi A, Minamikawa R, Oishi T, Sato T, Chida N. Asymmetric Total Synthesis of Fasicularin by Chiral N -Alkoxyamide Strategy. Org Lett 2019;21:1868-71. [DOI: 10.1021/acs.orglett.9b00478] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
45 Huang Y, Wang S, Wu D, Huang P. Intermolecular Dehydrative [4 + 2] Aza-Annulation of N -Arylamides with Alkenes: A Direct and Divergent Entrance to Aza-Heterocycles. Org Lett 2019;21:1681-5. [DOI: 10.1021/acs.orglett.9b00233] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
46 Hiraoka S, Matsumoto T, Matsuzaka K, Sato T, Chida N. Approach to Fully Substituted Cyclic Nitrones from N-Hydroxylactam Derivatives: Development and Application to the Total Synthesis of Cylindricine C. Angew Chem Int Ed Engl 2019;58:4381-5. [PMID: 30720229 DOI: 10.1002/anie.201901049] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
47 Takahashi Y, Yoshii R, Sato T, Chida N. Iridium-Catalyzed Reductive Nucleophilic Addition to Secondary Amides. Org Lett 2018;20:5705-8. [PMID: 30192556 DOI: 10.1021/acs.orglett.8b02421] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 8.8] [Reference Citation Analysis]
48 Trillo P, Slagbrand T, Adolfsson H. Straightforward α-Amino Nitrile Synthesis Through Mo(CO) 6 -Catalyzed Reductive Functionalization of Carboxamides. Angew Chem 2018;130:12527-31. [DOI: 10.1002/ange.201807735] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
49 Trillo P, Slagbrand T, Adolfsson H. Straightforward α-Amino Nitrile Synthesis Through Mo(CO) 6 -Catalyzed Reductive Functionalization of Carboxamides. Angew Chem Int Ed 2018;57:12347-51. [DOI: 10.1002/anie.201807735] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 9.3] [Reference Citation Analysis]