BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xing R, Huang R, Qi W, Su R, He Z. Three-dimensionally printed bioinspired superhydrophobic PLA membrane for oil-water separation. AIChE J 2018;64:3700-8. [DOI: 10.1002/aic.16347] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Xu X, Liu G, Bai J, Cao M, Yu D, Wu X. In-situ self-compensation strategy for superhard, universal superhydrophilic/underwater superoleophobic coatings. Chemical Engineering Science 2022;262:118007. [DOI: 10.1016/j.ces.2022.118007] [Reference Citation Analysis]
2 Chen Y, Quan Z, Song W, Wang Z, Li B, Mu Z, Niu S, Zhang J, Han Z, Ren L. Hierarchically structured biomimetic membrane with mechanically/chemically durability and special wettability for highly efficient oil–water separation. Separation and Purification Technology 2022;300:121860. [DOI: 10.1016/j.seppur.2022.121860] [Reference Citation Analysis]
3 Khan SB, Irfan S, Lam SS, Sun X, Chen S. 3D printed nanofiltration membrane technology for waste water distillation. Journal of Water Process Engineering 2022;49:102958. [DOI: 10.1016/j.jwpe.2022.102958] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Mcmillin RE, Clark B, Kay K, Gupton BF, Ferri JK. Customizing continuous chemistry and catalytic conversion for carbon–carbon cross-coupling with 3dP. International Journal of Chemical Reactor Engineering 2022;0. [DOI: 10.1515/ijcre-2022-0117] [Reference Citation Analysis]
5 Tümer EH, Erbil HY, Akdoǧan N. Wetting of Superhydrophobic Polylactic Acid Micropillared Patterns. Langmuir 2022. [PMID: 35930742 DOI: 10.1021/acs.langmuir.2c01708] [Reference Citation Analysis]
6 Wang G, Yang C, Shan M, Jia H, Zhang S, Chen X, Liu W, Liu X, Chen J, Wang X. Synergistic Poly(lactic acid) Antibacterial Surface Combining Superhydrophobicity for Antiadhesion and Chlorophyll for Photodynamic Therapy. Langmuir 2022. [PMID: 35839422 DOI: 10.1021/acs.langmuir.2c01377] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Thiam BG, El Magri A, Vanaei HR, Vaudreuil S. 3D Printed and Conventional Membranes—A Review. Polymers 2022;14:1023. [DOI: 10.3390/polym14051023] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 13.0] [Reference Citation Analysis]
8 More N, Avhad M, Utekar S, More A. Polylactic acid (PLA) membrane—significance, synthesis, and applications: a review. Polym Bull . [DOI: 10.1007/s00289-022-04135-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Guo Y, Luo B, Wang X, Liu S, Geng T. Wettability control and oil/water separation performance of 3D ‐printed porous materials. J Appl Polym Sci 2022;139:51570. [DOI: 10.1002/app.51570] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mohd Yusoff NH, Irene Teo L, Phang SJ, Wong V, Cheah KH, Lim S. Recent Advances in Polymer-based 3D Printing for Wastewater Treatment Application: An Overview. Chemical Engineering Journal 2022;429:132311. [DOI: 10.1016/j.cej.2021.132311] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
11 Chen T, Guo J, Xu H, Zhang J, Hu N, Liu H. One-step fabrication of biodegradable superhydrophobic PLA fabric for continuous oil/water separation. Applied Surface Science 2022;576:151766. [DOI: 10.1016/j.apsusc.2021.151766] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
12 Fijoł N, Aguilar-sánchez A, Mathew AP. 3D-printable biopolymer-based materials for water treatment: A review. Chemical Engineering Journal 2022;430:132964. [DOI: 10.1016/j.cej.2021.132964] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
13 Rasouli S, Rezaei N, Hamedi H, Zendehboudi S, Duan X. Superhydrophobic and superoleophilic membranes for oil-water separation application: A comprehensive review. Materials & Design 2021;204:109599. [DOI: 10.1016/j.matdes.2021.109599] [Cited by in Crossref: 16] [Cited by in F6Publishing: 58] [Article Influence: 16.0] [Reference Citation Analysis]
14 Arunagiri V, Prasannan A, Udomsin J, Lai J, Wang C, Hong P, Tsai HC. Facile fabrication of eco-friendly polycaprolactone (PCL)/Poly-D, L-Lactic acid (PDLLA) modified melamine sorbent for oil-spill cleaning and water/oil (W/O) emulsion separation. Separation and Purification Technology 2021;259:118081. [DOI: 10.1016/j.seppur.2020.118081] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
15 Low Z, Wang H. Challenges in membrane-based liquid phase separations. Green Chemical Engineering 2021;2:3-13. [DOI: 10.1016/j.gce.2021.02.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Lin Z, Guo X, He Z, Liang X, Wang M, Jin G. Thermal degradation kinetics study of molten polylactide based on Raman spectroscopy. Polym Eng Sci 2021;61:201-10. [DOI: 10.1002/pen.25568] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Liu Y, Yang B, Xu J, Zhao H, He Y. Oil-water separation performance of aligned single walled carbon nanotubes membrane: A reactive molecular dynamics simulation study. Journal of Molecular Liquids 2021;321:114174. [DOI: 10.1016/j.molliq.2020.114174] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
18 Kaur G, Marmur A, Magdassi S. Fabrication of superhydrophobic 3D objects by Digital Light Processing. Additive Manufacturing 2020;36:101669. [DOI: 10.1016/j.addma.2020.101669] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Song Y, Wang B, Altemose P, Kowall C, Li L. 3D-Printed Membranes with a Zwitterionic Hydrogel Coating for More Robust Oil–Water Separation. Ind Eng Chem Res 2020;59:21058-65. [DOI: 10.1021/acs.iecr.0c04436] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
20 Yanar N, Kallem P, Son M, Park H, Kang S, Choi H. A New era of water treatment technologies: 3D printing for membranes. Journal of Industrial and Engineering Chemistry 2020;91:1-14. [DOI: 10.1016/j.jiec.2020.07.043] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 6.5] [Reference Citation Analysis]
21 McMillin RE, Luxon AR, Ferri JK. Enabling intensification of multiphase chemical processes with additive manufacturing. Adv Colloid Interface Sci 2020;285:102294. [PMID: 33164781 DOI: 10.1016/j.cis.2020.102294] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Yue X, Fu D, Zhang T, Yang D, Qiu F. Superhydrophobic Stainless-Steel Mesh with Excellent Electrothermal Properties for Efficient Separation of Highly Viscous Water-in-Crude Oil Emulsions. Ind Eng Chem Res 2020;59:17918-26. [DOI: 10.1021/acs.iecr.0c03549] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
23 Issac MN, Kandasubramanian B. Review of manufacturing three-dimensional-printed membranes for water treatment. Environ Sci Pollut Res Int 2020;27:36091-108. [PMID: 32627102 DOI: 10.1007/s11356-020-09452-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
24 Zhu C, Jiang W, Hu J, Sun P, Li A, Zhang Q. Polylactic Acid Nonwoven Fabric Surface Modified with Stereocomplex Crystals for Recyclable Use in Oil/Water Separation. ACS Appl Polym Mater 2020;2:2509-16. [DOI: 10.1021/acsapm.9b01197] [Cited by in Crossref: 13] [Cited by in F6Publishing: 7] [Article Influence: 6.5] [Reference Citation Analysis]
25 Yue R, Guan J, Zhang C, Yuan P, Liu L, Zaheer Afzal M, Wang S, Sun X. Photoinduced superwetting membranes for separation of oil-in-water emulsions. Separation and Purification Technology 2020;241:116536. [DOI: 10.1016/j.seppur.2020.116536] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
26 Li X, Shan H, Zhang W, Li B. 3D printed robust superhydrophilic and underwater superoleophobic composite membrane for high efficient oil/water separation. Separation and Purification Technology 2020;237:116324. [DOI: 10.1016/j.seppur.2019.116324] [Cited by in Crossref: 14] [Cited by in F6Publishing: 31] [Article Influence: 7.0] [Reference Citation Analysis]
27 Zhang Y, Gurzadyan GG, Lu R, Zhang S, Jin X, Tang B. Efficient photothermal conversion of Fe 2 O 3RGO guided from ultrafast quenching effect of photoexcited state. AIChE J 2020;66. [DOI: 10.1002/aic.16975] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
28 Ge B, Yang X, Li H, Zhao L, Ren G, Miao X, Pu X, Li W. A durable superhydrophobic BiOBr/PFW cotton fabric for visible light response degradation and oil/water separation performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;585:124027. [DOI: 10.1016/j.colsurfa.2019.124027] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 10.5] [Reference Citation Analysis]
29 Zuo M, Pan N, Liu Q, Ren X, Liu Y, Huang T. Three-dimensionally printed polylactic acid/cellulose acetate scaffolds with antimicrobial effect. RSC Adv 2020;10:2952-8. [DOI: 10.1039/c9ra08916k] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
30 Xing R, Yang B, Huang R, Qi W, Su R, Binks BP, He Z. Three-Dimensionally Printed Bioinspired Superhydrophobic Packings for Oil-in-Water Emulsion Separation. Langmuir 2019;35:12799-806. [DOI: 10.1021/acs.langmuir.9b02131] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
31 Xie A, Cui J, Chen Y, Lang J, Li C, Yan Y, Dai J. Dual-channel separation system based on platanus fruit-like Ni@Ni(OH) hierarchical architecture for fast, efficient and continuous light/heavy oil–water separation. Journal of Industrial and Engineering Chemistry 2019;74:208-15. [DOI: 10.1016/j.jiec.2019.03.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
32 Koh JJ, Lim GJH, Zhou X, Zhang X, Ding J, He C. 3D-Printed Anti-Fouling Cellulose Mesh for Highly Efficient Oil/Water Separation Applications. ACS Appl Mater Interfaces 2019;11:13787-95. [PMID: 30884229 DOI: 10.1021/acsami.9b01753] [Cited by in Crossref: 51] [Cited by in F6Publishing: 62] [Article Influence: 17.0] [Reference Citation Analysis]
33 Lee K, Park H, Kim J, Chun D. Fabrication of a superhydrophobic surface using a fused deposition modeling (FDM) 3D printer with poly lactic acid (PLA) filament and dip coating with silica nanoparticles. Applied Surface Science 2019;467-468:979-91. [DOI: 10.1016/j.apsusc.2018.10.205] [Cited by in Crossref: 40] [Cited by in F6Publishing: 37] [Article Influence: 13.3] [Reference Citation Analysis]