BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fakharuddin A, Li H, Di Giacomo F, Zhang T, Gasparini N, Elezzabi AY, Mohanty A, Ramadoss A, Ling J, Soultati A, Tountas M, Schmidt‐mende L, Argitis P, Jose R, Nazeeruddin MK, Mohd Yusoff ARB, Vasilopoulou M. Fiber‐Shaped Electronic Devices. Adv Energy Mater 2021;11:2101443. [DOI: 10.1002/aenm.202101443] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 24.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang D, Zhao M, Zhang H, Terrones M, Wang Y. A novel electro-synthesis of hierarchical Ni–Al LDH nanostructures on 3D carbon nanotube networks for hybrid-capacitors. Carbon 2023;201:1081-1089. [DOI: 10.1016/j.carbon.2022.10.021] [Reference Citation Analysis]
2 Ren H, Huang C. Progress in electrode modification of fibrous supercapacitors. Journal of Energy Storage 2022;56:106032. [DOI: 10.1016/j.est.2022.106032] [Reference Citation Analysis]
3 Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. Adv Sci (Weinh) 2022;:e2203808. [PMID: 36253094 DOI: 10.1002/advs.202203808] [Reference Citation Analysis]
4 Niu L, Wang J, Wang K, Pan H, Jiang G, Chen C, Ma P. High-Speed Sirospun Conductive Yarn for Stretchable Embedded Knitted Circuit and Self-Powered Wearable Device. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00203-1] [Reference Citation Analysis]
5 Du X, Zhang K. Recent progress in fibrous high-entropy energy harvesting devices for wearable applications. Nano Energy 2022;101:107600. [DOI: 10.1016/j.nanoen.2022.107600] [Reference Citation Analysis]
6 Ramadoss A, Wong KK, Swain N, Mohanty A, K K, K S, Schmidt Mende L. Flexible, Lightweight, and Ultrabendable RuO 2 –MnO 2 /Graphite Sheets for Supercapacitors. Energy Fuels. [DOI: 10.1021/acs.energyfuels.2c01336] [Reference Citation Analysis]
7 Wang B, Zhang W, Zhao F, Yu WW, Elezzabi AY, Liu L, Li H. An overview of recent progress in the development of flexible electrochromic devices. Nano Materials Science 2022. [DOI: 10.1016/j.nanoms.2022.08.002] [Reference Citation Analysis]
8 Man Z, Zhu X, Ye S, Wu G, Bao N. Recent Advances and Future Perspectives of Fiber-Shaped Batteries. Energy Fuels. [DOI: 10.1021/acs.energyfuels.2c01835] [Reference Citation Analysis]
9 Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2022. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Reference Citation Analysis]
10 Kareri T, Hossain MS, Ram MK, Takshi A. A flexible fiber‐shaped hybrid cell with a photoactive gel electrolyte for concurrent solar energy harvesting and charge storage. Intl J of Energy Research. [DOI: 10.1002/er.8371] [Reference Citation Analysis]
11 Ling J, Kunwar R, Li L, Peng S, Misnon II, Ab Rahim MH, Yang C, Jose R. Self-rechargeable energizers for sustainability. eScience 2022;2:347-364. [DOI: 10.1016/j.esci.2022.07.002] [Reference Citation Analysis]
12 Ranjith KS, Ghoreishian SM, Chodankar NR, Raju GSR, Patil SJ, Huh YS, Han Y. Hierarchical layer to layer of ternary heterostructure: Nanograin nickel carbonate embedded layered NiMnO 3 ‐rGO‐Co 3 O 4 composite array as a high‐performance electrode for hybrid supercapacitors. Intl J of Energy Research. [DOI: 10.1002/er.8206] [Reference Citation Analysis]
13 Yong S, Hillier N, Beeby S. Fabrication of a Flexible Aqueous Textile Zinc-Ion Battery in a Single Fabric Layer. Front Electron 2022;3:866527. [DOI: 10.3389/felec.2022.866527] [Reference Citation Analysis]
14 Panidi J, Georgiadou DG, Schoetz T, Prodromakis T. Advances in Organic and Perovskite Photovoltaics Enabling a Greener Internet of Things. Adv Funct Materials 2022;32:2200694. [DOI: 10.1002/adfm.202200694] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Hwang YH, Noh B, Lee J, Lee HS, Park Y, Choi KC. High-Performance and Reliable White Organic Light-Emitting Fibers for Truly Wearable Textile Displays. Adv Sci (Weinh) 2022;9:e2104855. [PMID: 35072356 DOI: 10.1002/advs.202104855] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Kim J, Yu H, Jung JY, Kim MJ, Jeon D, Jeong HS, Kim ND. 3D Architecturing Strategy on the Utmost Carbon Nanotube Fiber for Ultra‐High Performance Fiber‐Shaped Supercapacitor. Adv Funct Materials. [DOI: 10.1002/adfm.202113057] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
17 Al-dhahebi AM, Ling J, Krishnan SG, Yousefzadeh M, Elumalai NK, Saheed MSM, Ramakrishna S, Jose R. Electrospinning research and products: The road and the way forward. Applied Physics Reviews 2022;9:011319. [DOI: 10.1063/5.0077959] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
18 Li Y, Zhang Y, Yi J, Peng X, Cheng R, Ning C, Sheng F, Wang S, Dong K, Wang ZL. Large‐scale fabrication of core‐shell triboelectric braided fibers and power textiles for energy harvesting and plantar pressure monitoring. EcoMat. [DOI: 10.1002/eom2.12191] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
19 Wojdalska K, Dong Y, Vapaavuori J. Textile integrable mechanochromic strain sensor based on the interplay of supramolecular interactions. Materials & Design 2021;212:110175. [DOI: 10.1016/j.matdes.2021.110175] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Marriam I, Tebyetekerwa M, Xu Z, Chathuranga H, Chen S, Chen H, Zheng J, Du A, Yan C. Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Materials 2021;43:62-84. [DOI: 10.1016/j.ensm.2021.08.039] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
21 Feng X, Shi X, Ning J, Wang D, Zhang J, Hao Y, Wu Z. Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications. eScience 2021;1:124-40. [DOI: 10.1016/j.esci.2021.11.005] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 9.0] [Reference Citation Analysis]
22 Yar A, Krishnan SG, Dennis JO, Khalid M, Jose R. Template-assisted electrodeposited cupric oxide nanotubes and hierarchical nanospikes for tailoring electrode-electrolyte interfacial charge transfer. Ceramics International 2021;47:34732-9. [DOI: 10.1016/j.ceramint.2021.09.012] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]