BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shen F, Li Z, Guo H, Yang Z, Wu H, Wang M, Luo J, Xie S, Peng Y, Pu H. Recent Advances towards Ocean Energy Harvesting and Self‐Powered Applications Based on Triboelectric Nanogenerators. Adv Electron Mater 2021;7:2100277. [DOI: 10.1002/aelm.202100277] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Yin P, Tang L, Li Z, Guo H, Aw KC. Circuit representation, experiment and analysis of parallel-cell triboelectric nanogenerator. Energy Conversion and Management 2023;278:116741. [DOI: 10.1016/j.enconman.2023.116741] [Reference Citation Analysis]
2 Maharjan P, Bhatta T, Hui X, Pradhan GB, Song H, Shrestha K, Park JY. Brachistochrone Bowl‐Inspired Hybrid Nanogenerator Integrated with Physio‐Electrochemical Multisensors for Self‐Sustainable Smart Pool Monitoring Systems. Advanced Energy Materials 2023. [DOI: 10.1002/aenm.202203849] [Reference Citation Analysis]
3 Pang Y, Fang Y, Su J, Wang H, Tan Y, Cao C(. Soft Ball‐Based Triboelectric–Electromagnetic Hybrid Nanogenerators for Wave Energy Harvesting. Adv Materials Technologies 2023. [DOI: 10.1002/admt.202201246] [Reference Citation Analysis]
4 Zhao L, Zou H, Xie X, Guo D, Gao Q, Wu Z, Yan G, Wei K, Zhang W. Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring. Nano Energy 2023. [DOI: 10.1016/j.nanoen.2023.108222] [Reference Citation Analysis]
5 Dai S, Li X, Jiang C, Ping J, Ying Y. Triboelectric nanogenerators for smart agriculture. InfoMat 2022. [DOI: 10.1002/inf2.12391] [Reference Citation Analysis]
6 Li J, Hu Y, Wang X, He L, Ma J, Wan N, Wen J, Cheng T. A Bow‐Drill Structured Triboelectric Nanogenerator for Marine Ranching Monitoring. Adv Materials Technologies 2022. [DOI: 10.1002/admt.202201471] [Reference Citation Analysis]
7 Guan Z, Liu L, Xu X, Liu A, Wu H, Li J, Ou-yang W. A self-powered acoustic sensor excited by ultrasonic wave for detecting and locating underwater ultrasonic sources. Nano Energy 2022;104:107879. [DOI: 10.1016/j.nanoen.2022.107879] [Reference Citation Analysis]
8 Rashid A, Zubair U, Ashraf M, Javid A, Abid HA, Akram S. Flexible piezoelectric coatings on textiles for energy harvesting and autonomous sensing applications: a review. J Coat Technol Res 2022. [DOI: 10.1007/s11998-022-00690-2] [Reference Citation Analysis]
9 Zhao Z, Liu D, Li Y, Wang ZL, Wang J. Direct-current triboelectric nanogenerator based on electrostatic breakdown effect. Nano Energy 2022;102:107745. [DOI: 10.1016/j.nanoen.2022.107745] [Reference Citation Analysis]
10 Peng Y, Zhang L, Gong Y, Yang Z, Wang M, Li Z, Zhong S, Xie S. On the amplitude truncation effect in electromagnetic energy harvesters: Modeling and experimental validation. Energy Reports 2022;8:13544-13557. [DOI: 10.1016/j.egyr.2022.10.056] [Reference Citation Analysis]
11 Zhang Q, Liu Z, Jiang X, Peng Y, Zhu C, Li Z. Experimental investigation on performance improvement of cantilever piezoelectric energy harvesters via escapement mechanism from extremely Low-Frequency excitations. Sustainable Energy Technologies and Assessments 2022;53:102591. [DOI: 10.1016/j.seta.2022.102591] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
12 Xin C, Li Z, Zhang Q, Peng Y, Guo H, Xie S. Investigating the output performance of triboelectric nanogenerators with single/double-sided interlayer. Nano Energy 2022;100:107448. [DOI: 10.1016/j.nanoen.2022.107448] [Cited by in Crossref: 26] [Cited by in F6Publishing: 33] [Article Influence: 26.0] [Reference Citation Analysis]
13 Dong X, Liu Z, Yang P, Chen X. Harvesting Wind Energy Based on Triboelectric Nanogenerators. Nanoenergy Advances 2022;2:245-270. [DOI: 10.3390/nanoenergyadv2030013] [Reference Citation Analysis]
14 Wang J, Dai X, Pei X, Qi L, Ning F, Chen J, Li Y, Chen J, Zhao Y. Ferroelectric La x Fe 0.1– x Codoped ZnO Nanorod Triboelectric Nanogenerators for Electrochemical Rhodamine B Degradation. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02648] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Li G, Wu S, Sha Z, Zhou Y, Wang C, Peng S. Dual-breakdown direct-current triboelectric nanogenerator with synergistically enhanced performance. Nano Energy 2022;99:107355. [DOI: 10.1016/j.nanoen.2022.107355] [Reference Citation Analysis]
16 Shen F, Zhang D, Zhang Q, Li Z, Guo H, Gong Y, Peng Y. Influence of temperature difference on performance of solid-liquid triboelectric nanogenerators. Nano Energy 2022;99:107431. [DOI: 10.1016/j.nanoen.2022.107431] [Cited by in Crossref: 24] [Cited by in F6Publishing: 34] [Article Influence: 24.0] [Reference Citation Analysis]
17 Sosa MD, D'Accorso NB, Martínez Ricci ML, Negri RM. Liquid-Polymer Contact Electrification: Modeling the Dependence of Surface Charges and ξ-Potential on pH and Added-Salt Concentration. Langmuir 2022. [PMID: 35834348 DOI: 10.1021/acs.langmuir.2c00813] [Reference Citation Analysis]
18 Qu M, Shen L, Wang J, Zhang N, Pang Y, Wu Y, Ge J, Peng L, Yang J, He J. Superhydrophobic, Humidity-Resistant, and Flexible Triboelectric Nanogenerators for Biomechanical Energy Harvesting and Wearable Self-Powered Sensing. ACS Appl Nano Mater . [DOI: 10.1021/acsanm.2c02026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kargar SM, Hao G. A Drifter-Based Self-Powered Piezoelectric Sensor for Ocean Wave Measurements. Sensors (Basel) 2022;22:5050. [PMID: 35808544 DOI: 10.3390/s22135050] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Radhakrishnan S, Joseph S, Jelmy E, Saji K, Sanathanakrishnan T, John H. Triboelectric nanogenerators for marine energy harvesting and sensing applications. Results in Engineering 2022. [DOI: 10.1016/j.rineng.2022.100487] [Reference Citation Analysis]
21 Li Z, Peng X, Hu G, Peng Y. Theoretical, numerical, and experimental studies of a frequency up-conversion piezoelectric energy harvester. International Journal of Mechanical Sciences 2022;223:107299. [DOI: 10.1016/j.ijmecsci.2022.107299] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
22 Xu R, Wang H, Xi Z, Wang W, Xu M. Recent Progress on Wave Energy Marine Buoys. JMSE 2022;10:566. [DOI: 10.3390/jmse10050566] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Xin C, Guo H, Shen F, Peng Y, Xie S, Li Z, Zhang Q. A Hybrid Generator with Electromagnetic Transduction for Improving the Power Density of Triboelectric Nanogenerators and Scavenging Wind Energy. Adv Materials Technologies. [DOI: 10.1002/admt.202101610] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Xie Y, Hu J, Li H, Mi H, Ni G, Zhu X, Jing X, Wang Y, Zheng G, Liu C, Shen C. Green fabrication of double-sided self-supporting triboelectric nanogenerator with high durability for energy harvesting and self-powered sensing. Nano Energy 2022;93:106827. [DOI: 10.1016/j.nanoen.2021.106827] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
25 Shen F, Li Z, Xin C, Guo H, Peng Y, Li K. Interface Defect Detection and Identification of Triboelectric Nanogenerators via Voltage Waveforms and Artificial Neural Network. ACS Appl Mater Interfaces 2022;14:3437-45. [PMID: 35001611 DOI: 10.1021/acsami.1c19718] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
26 Yin P, Aw KC, Jiang X, Xin C, Guo H, Tang L, Peng Y, Li Z. Fish Gills Inspired Parallel-Cell Triboelectric Nanogenerator. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.106976] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
27 Ahmed A. Self-powered wireless sensing platform for monitoring marine life based on harvesting hydrokinetic energy of water currents. J Mater Chem A 2022;10:1992-8. [DOI: 10.1039/d1ta04861a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]