1 |
Yang L, Li C, Lu W, An J, Liu D, Luo J, Li Y, Wang ZL, Tang W, Meng B. High-Precision Wearable Displacement Sensing System for Clinical Diagnosis of Anterior Cruciate Ligament Tears. ACS Nano 2023. [PMID: 36930244 DOI: 10.1021/acsnano.2c11996] [Reference Citation Analysis]
|
2 |
Hu Z, Lin L, Lin W, Xu Y, Xia X, Peng Z, Sun Z, Wang Z. Machine Learning for Tactile Perception: Advancements, Challenges, and Opportunities. Advanced Intelligent Systems 2023. [DOI: 10.1002/aisy.202200371] [Reference Citation Analysis]
|
3 |
Yum H, Han SA, Konstantinov K, Kim S, Kim JH. Smart Triboelectric Nanogenerators Toward Human‐Oriented Technologies: Health Monitoring, Wound Healing, Drug Delivery. Adv Materials Technologies 2023. [DOI: 10.1002/admt.202201500] [Reference Citation Analysis]
|
4 |
Huang Y, Peng C, Li Y, Yang Y, Feng W. Elastomeric polymers for conductive layers of flexible sensors: Materials, fabrication, performance, and applications. Aggregate 2023. [DOI: 10.1002/agt2.319] [Reference Citation Analysis]
|
5 |
Wei L, Wang SJ. Motion Tracking of Daily Living and Physical Activities in Healthcare: A Systematic Review from Designers’ Perspective (Preprint).. [DOI: 10.2196/preprints.46282] [Reference Citation Analysis]
|
6 |
Fang Z, Zhou Z, Yi M, Zhang Z, Luo X, Ahmed A. A roller-bearing-based triboelectric nanosensor for freight train synergistic maintenance in smart transportation. Nano Energy 2023;106:108089. [DOI: 10.1016/j.nanoen.2022.108089] [Reference Citation Analysis]
|
7 |
Zhou H, Xu L, Ren Z, Zhu J, Lee C. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics. Nanoscale Adv 2023;5:538-70. [PMID: 36756499 DOI: 10.1039/d2na00608a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
8 |
Beigh NT, Beigh F, Naval S, Mukherjee D, Mallick D. Machine Learning Enabled Hind Foot Deformity Detection Using Individually Addressable Hybrid Pressure Sensor Matrix. 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS) 2023. [DOI: 10.1109/mems49605.2023.10052134] [Reference Citation Analysis]
|
9 |
He T, Wen F, Yang Y, Le X, Liu W, Lee C. Emerging Wearable Chemical Sensors Enabling Advanced Integrated Systems toward Personalized and Preventive Medicine. Anal Chem 2023;95:490-514. [PMID: 36625107 DOI: 10.1021/acs.analchem.2c04527] [Reference Citation Analysis]
|
10 |
Fu J, Wang H, Na R, Jisaihan A, Wang Z, Ohno Y. Recent advancements in digital health management using multi-modal signal monitoring. Math Biosci Eng 2023;20:5194-222. [PMID: 36896542 DOI: 10.3934/mbe.2023241] [Reference Citation Analysis]
|
11 |
Xie L, Zhang Z, Wu Q, Gao Z, Mi G, Wang R, Sun HB, Zhao Y, Du Y. Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. Nanoscale 2023;15:405-33. [PMID: 36519286 DOI: 10.1039/d2nr04551f] [Reference Citation Analysis]
|
12 |
Prasanna APS, Khandelwal G, Kim S. Triboelectric Nanogenerator for Sports. Handbook of Triboelectric Nanogenerators 2023. [DOI: 10.1007/978-3-031-05722-9_28-1] [Reference Citation Analysis]
|
13 |
Sun F, Zhu Y, Jia C, Zhao T, Chu L, Mao Y. Advances in self-powered sports monitoring sensors based on triboelectric nanogenerators. Journal of Energy Chemistry 2023. [DOI: 10.1016/j.jechem.2022.12.024] [Reference Citation Analysis]
|
14 |
Wen F, He T, Yang Y, Wang C, Lee C. Triboelectric Nanogenerator as Wearable Sensing Devices. Handbook of Triboelectric Nanogenerators 2023. [DOI: 10.1007/978-3-031-05722-9_42-1] [Reference Citation Analysis]
|
15 |
Wu Z. Triboelectric Nanogenerator for Human-Machine Interfacing. Handbook of Triboelectric Nanogenerators 2023. [DOI: 10.1007/978-3-031-05722-9_44-1] [Reference Citation Analysis]
|
16 |
Xu S, Wu W. Triboelectric Nanogenerator for Tactile Sensing and AI. Handbook of Triboelectric Nanogenerators 2023. [DOI: 10.1007/978-3-031-05722-9_43-1] [Reference Citation Analysis]
|
17 |
Wolff C, Steinheimer P, Warmerdam E, Dahmen T, Slusallek P, Schlinkmann C, Chen F, Orth M, Pohlemann T, Ganse B. Effects of age, body height, body weight, body mass index and handgrip strength on the trajectory of the plantar pressure stance-phase curve of the gait cycle. Front Bioeng Biotechnol 2023;11:1110099. [PMID: 36873371 DOI: 10.3389/fbioe.2023.1110099] [Reference Citation Analysis]
|
18 |
Luo J, Wang ZL. Triboelectric Nanogenerator as Intelligent Sensors for Security and Human Behavior. Handbook of Triboelectric Nanogenerators 2023. [DOI: 10.1007/978-3-031-05722-9_48-1] [Reference Citation Analysis]
|
19 |
Xiaole Cao, Yao Xiong, Jia Sun, Xiaoyin Xie, Qijun Sun, Zhong Lin Wang. Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things. Nanomicro Lett 2022;15:14. [PMID: 36538115 DOI: 10.1007/s40820-022-00981-8] [Reference Citation Analysis]
|
20 |
Tian X, Hua T, Yang M, Niu B, Yang Y. Multiscale Engineering of Sustainable and Versatile All‐Fiber Triboelectric Nanogenerator Based on Multifunctional Fibrous Materials and 3D Woven Architecture. Adv Materials Technologies 2022. [DOI: 10.1002/admt.202201105] [Reference Citation Analysis]
|
21 |
Li D, Zhou J, Yao K, Liu S, He J, Su J, Qu Q, Gao Y, Song Z, Yiu C, Sha C, Sun Z, Zhang B, Li J, Huang L, Xu C, Wong TH, Huang X, Li J, Ye R, Wei L, Zhang Z, Guo X, Dai Y, Xie Z, Yu X. Touch IoT enabled by wireless self-sensing and haptic-reproducing electronic skin. Sci Adv 2022;8:eade2450. [PMID: 36563155 DOI: 10.1126/sciadv.ade2450] [Reference Citation Analysis]
|
22 |
Sheela A J, M G, Raj Kumar V, Prabu V C, Vidya M QM. A hybrid DL with the Internet of Things to monitor human activities using wearable sensors. Measurement: Sensors 2022;24:100496. [DOI: 10.1016/j.measen.2022.100496] [Reference Citation Analysis]
|
23 |
Divya S, Panda S, Hajra S, Jeyaraj R, Paul A, Park SH, Kim HJ, Oh TH. Smart data processing for energy harvesting systems using artificial intelligence. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.108084] [Reference Citation Analysis]
|
24 |
Zhou L, Wang Y, Hu Z, Wang Y, Wang J, Xu M. Deep learning assisted mat-type triboelectric nanogenerator for personnel monitoring. 2022 China Automation Congress (CAC) 2022. [DOI: 10.1109/cac57257.2022.10055113] [Reference Citation Analysis]
|
25 |
Mitsuzuka M, Takarada J, Kawahara I, Morimoto R, Wang Z, Kawamura S, Tajitsu Y. Application of High-Photoelasticity Polyurethane to Tactile Sensor for Robot Hands. Polymers (Basel) 2022;14. [PMID: 36501451 DOI: 10.3390/polym14235057] [Reference Citation Analysis]
|
26 |
Yang Y, Guo X, Zhu M, Sun Z, Zhang Z, He T, Lee C. Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Advanced Energy Materials 2022. [DOI: 10.1002/aenm.202203040] [Reference Citation Analysis]
|
27 |
Shen S, Yi J, Sun Z, Guo Z, He T, Ma L, Li H, Fu J, Lee C, Wang ZL. Human Machine Interface with Wearable Electronics Using Biodegradable Triboelectric Films for Calligraphy Practice and Correction. Nanomicro Lett 2022;14:225. [PMID: 36378352 DOI: 10.1007/s40820-022-00965-8] [Reference Citation Analysis]
|
28 |
Ma X, Song C, Zhang F, Dai Y, He P, Zhang X. Soft, Multifunctional, Robust Film Sensor Using a Ferroelectret with Significant Longitudinal and Transverse Piezoelectric Activity for Biomechanical Monitoring. ACS Appl Mater Interfaces 2022. [DOI: 10.1021/acsami.2c14378] [Reference Citation Analysis]
|
29 |
Naji Hussain A, Abboud SA, Jumaa BAB, Abdullah MN. Impact of feature reduction techniques on classification accuracy of machine learning techniques in leg rehabilitation. Measurement: Sensors 2022. [DOI: 10.1016/j.measen.2022.100544] [Reference Citation Analysis]
|
30 |
Wang Z, Bu M, Xiu K, Sun J, Hu N, Zhao L, Gao L, Kong F, Zhu H, Song J, Lau D. A Flexible, Stretchable and Triboelectric Smart Sensor Based on Graphene Oxide and Polyacrylamide Hydrogel for High Precision Gait Recognition in Parkinsonian and Hemiplegic Patients. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.107978] [Reference Citation Analysis]
|
31 |
Subahi AF, Khalaf OI, Alotaibi Y, Natarajan R, Mahadev N, Ramesh T. Modified Self-Adaptive Bayesian Algorithm for Smart Heart Disease Prediction in IoT System. Sustainability 2022;14:14208. [DOI: 10.3390/su142114208] [Reference Citation Analysis]
|
32 |
Feng J, Zhou H, Cao Z, Zhang E, Xu S, Li W, Yao H, Wan L, Liu G. 0.5 m Triboelectric Nanogenerator for Efficient Blue Energy Harvesting of All-Sea Areas. Adv Sci (Weinh) 2022;:e2204407. [PMID: 36253135 DOI: 10.1002/advs.202204407] [Reference Citation Analysis]
|
33 |
Ibrahim NFA, Sabani N, Johari S, Manaf AA, Wahab AA, Zakaria Z, Noor AM. A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. Sensors (Basel) 2022;22:7670. [PMID: 36236769 DOI: 10.3390/s22197670] [Reference Citation Analysis]
|
34 |
Zhang Y, Liu X, Qiao X, Fan Y. Characteristics and Emerging Trends in Research on rehabilitation robots (2001-2020): A Bibliometric Study (Preprint). Journal of Medical Internet Research 2022. [DOI: 10.2196/42901] [Reference Citation Analysis]
|
35 |
Zhang Y, Liu X, Qiao X, Fan Y. Intellectual Structure and Emerging Trend of Research on rehabilitation robots: A Bibliometric Study (Preprint).. [DOI: 10.2196/preprints.42901] [Reference Citation Analysis]
|
36 |
Chen X, Hu D, Zhang R, Pan Z, Chen Y, Xie L, Luo J, Zhu Y. Interpretable evaluation for the Brunnstrom recovery stage of the lower limb based on wearable sensors. Front Neuroinform 2022;16:1006494. [DOI: 10.3389/fninf.2022.1006494] [Reference Citation Analysis]
|
37 |
Zhu Y, Sun F, Jia C, Huang C, Wang K, Li Y, Chou L, Mao Y. A 3D Printing Triboelectric Sensor for Gait Analysis and Virtual Control Based on Human–Computer Interaction and the Internet of Things. Sustainability 2022;14:10875. [DOI: 10.3390/su141710875] [Reference Citation Analysis]
|
38 |
Liu L, Shi Q, Guo X, Zhang Z, Lee C. A facile frequency tuning strategy to realize vibration‐based hybridized piezoelectric‐triboelectric nanogenerators. EcoMat. [DOI: 10.1002/eom2.12279] [Reference Citation Analysis]
|
39 |
Yang Y, Shi Q, Zhang Z, Shan X, Salam B, Lee C. Robust triboelectric information‐mat enhanced by multi‐modality deep learning for smart home. InfoMat. [DOI: 10.1002/inf2.12360] [Reference Citation Analysis]
|
40 |
Zhang Y, Sun G. Real-Time Detection of Lower Limb Training Stability Function Based on Smart Wearable Sensors. Journal of Sensors 2022;2022:1-12. [DOI: 10.1155/2022/7503668] [Reference Citation Analysis]
|
41 |
Chakravarthi B, Prabhu Prasad BM, Chethana B, Pavan Kumar BN. Real-time Human Motion Tracking and Reconstruction using IMU Sensors. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET) 2022. [DOI: 10.1109/icecet55527.2022.9872721] [Reference Citation Analysis]
|
42 |
Sakhuja N, Kumar R, Katare P, Bhat N. Structure-Driven, Flexible, Multilayered, Paper-Based Pressure Sensor for Human–Machine Interfacing. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.1c08491] [Reference Citation Analysis]
|
43 |
Wu R, Liu S, Lin Z, Zhu S, Ma L, Wang ZL. Industrial Fabrication of 3D Braided Stretchable Hierarchical Interlocked Fancy‐Yarn Triboelectric Nanogenerator for Self‐Powered Smart Fitness System. Advanced Energy Materials. [DOI: 10.1002/aenm.202201288] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
44 |
Sun Y, Chao S, Ouyang H, Zhang W, Luo W, Nie Q, Wang J, Luo C, Ni G, Zhang L, Yang J, Feng H, Mao G, Li Z. Hybrid nanogenerator based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment. Sci Bull (Beijing) 2022;67:1284-94. [PMID: 36546158 DOI: 10.1016/j.scib.2022.04.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
|
45 |
Wei W, Qin Z, Yan B, Wang Q, Kumar V. Application Effect of Motion Capture Technology in Basketball Resistance Training and Shooting Hit Rate in Immersive Virtual Reality Environment. Computational Intelligence and Neuroscience 2022;2022:1-9. [DOI: 10.1155/2022/4584980] [Reference Citation Analysis]
|
46 |
Bhatia D, Lee K, Niazi MUK, Park H. Triboelectric nanogenerator integrated origami gravity support device for shoulder rehabilitation using exercise gaming. Nano Energy 2022;97:107179. [DOI: 10.1016/j.nanoen.2022.107179] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
|
47 |
Wang L, Fei Z, Qi Y, Zhang C, Zhao L, Jiang Z, Maeda R. Overview of Human Kinetic Energy Harvesting and Application. ACS Appl Energy Mater . [DOI: 10.1021/acsaem.2c00703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
48 |
Liu C, Jiang D, Zhu G, Li Z, Zhang X, Tian P, Wang D, Wang E, Ouyang H, Xiao M, Li Z. A Light-Powered Triboelectric Nanogenerator Based on the Photothermal Marangoni Effect. ACS Appl Mater Interfaces 2022;14:22206-15. [PMID: 35522970 DOI: 10.1021/acsami.2c04651] [Reference Citation Analysis]
|
49 |
Xiang J, Yu R, Yang L, Zhao P, Wang R, Wu X, Peng B, Liu G. Breathable, Antibacterial, and Biocompatible Collagen Fiber Network Decorated with Zwitterionic Silver Nanoparticles for Plantar Pressure Monitoring. ACS Appl Mater Interfaces 2022;14:21645-56. [PMID: 35473302 DOI: 10.1021/acsami.2c01972] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
50 |
Jin C, Bai Z. MXene-Based Textile Sensors for Wearable Applications. ACS Sens 2022;7:929-50. [PMID: 35322661 DOI: 10.1021/acssensors.2c00097] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
51 |
Shi Q, Yang Y, Sun Z, Lee C. Progress of Advanced Devices and Internet of Things Systems as Enabling Technologies for Smart Homes and Health Care. ACS Mater Au 2022;2:394-435. [PMID: 36855708 DOI: 10.1021/acsmaterialsau.2c00001] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
52 |
Qin Y, Mo J, Liu Y, Zhang S, Wang J, Fu Q, Wang S, Nie S. Stretchable Triboelectric Self‐Powered Sweat Sensor Fabricated from Self‐Healing Nanocellulose Hydrogels. Adv Funct Materials. [DOI: 10.1002/adfm.202201846] [Cited by in Crossref: 35] [Cited by in F6Publishing: 36] [Article Influence: 35.0] [Reference Citation Analysis]
|
53 |
Zhang Z, Wen F, Sun Z, Guo X, He T, Lee C. Artificial Intelligence‐Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202100228] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
|
54 |
Xie Y, Hu J, Li H, Mi H, Ni G, Zhu X, Jing X, Wang Y, Zheng G, Liu C, Shen C. Green fabrication of double-sided self-supporting triboelectric nanogenerator with high durability for energy harvesting and self-powered sensing. Nano Energy 2022;93:106827. [DOI: 10.1016/j.nanoen.2021.106827] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
|