BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin Y, Genzer J, Dickey MD. Attributes, Fabrication, and Applications of Gallium-Based Liquid Metal Particles. Adv Sci (Weinh) 2020;7:2000192. [PMID: 32596120 DOI: 10.1002/advs.202000192] [Cited by in Crossref: 86] [Cited by in F6Publishing: 64] [Article Influence: 43.0] [Reference Citation Analysis]
Number Citing Articles
1 Ankit, Ho TYK, Nirmal A, Kulkarni MR, Accoto D, Mathews N. Soft Actuator Materials for Electrically Driven Haptic Interfaces. Advanced Intelligent Systems 2022;4:2100061. [DOI: 10.1002/aisy.202100061] [Reference Citation Analysis]
2 Hsiao C, Chen J, Li C. Microencapsulated Liquid Metals for the Autonomous Restoration of In-Mold Electronic Circuits. ACS Appl Electron Mater 2022;4:936-45. [DOI: 10.1021/acsaelm.1c01063] [Reference Citation Analysis]
3 Bury E, Chun S, Koh AS. Recent Advances in Deformable Circuit Components with Liquid Metal. Adv Electron Mater 2021;7:2001006. [DOI: 10.1002/aelm.202001006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
4 Livshits GI, Bao J, Sakamoto L, Misaka T, Usami Y, Otsuka Y, Matsumoto T. Sacrificial gold coating enhances transport of liquid metal in pressurized fountain pen lithography. Sci Rep 2021;11:4670. [PMID: 33633292 DOI: 10.1038/s41598-021-84065-4] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Lu H, Tang SY, Yun G, Li H, Zhang Y, Qiao R, Li W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis-A Review. Biosensors (Basel) 2020;10:E165. [PMID: 33153122 DOI: 10.3390/bios10110165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
6 Feng B, Jiang X, Zou G, Wang W, Sun T, Yang H, Zhao G, Dong M, Xiao Y, Zhu H, Liu L. Nacre‐Inspired, Liquid Metal‐Based Ultrasensitive Electronic Skin by Spatially Regulated Cracking Strategy. Adv Funct Mater 2021;31:2102359. [DOI: 10.1002/adfm.202102359] [Cited by in Crossref: 16] [Cited by in F6Publishing: 5] [Article Influence: 16.0] [Reference Citation Analysis]
7 Zuraiqi K, Zavabeti A, Allioux F, Tang J, Nguyen CK, Tafazolymotie P, Mayyas M, Ramarao AV, Spencer M, Shah K, Mcconville CF, Kalantar-zadeh K, Chiang K, Daeneke T. Liquid Metals in Catalysis for Energy Applications. Joule 2020;4:2290-321. [DOI: 10.1016/j.joule.2020.10.012] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
8 Wang Z, Xia X, Zhu M, Zhang X, Liu R, Ren J, Yang J, Li M, Jiang J, Liu Y. Rational Assembly of Liquid Metal/Elastomer Lattice Conductors for High‐Performance and Strain‐Invariant Stretchable Electronics. Adv Funct Materials 2022;32:2108336. [DOI: 10.1002/adfm.202108336] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
9 Baharfar M, Kalantar-Zadeh K. Emerging Role of Liquid Metals in Sensing. ACS Sens 2022;7:386-408. [PMID: 35119830 DOI: 10.1021/acssensors.1c02606] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Chambel A, Sanati AL, Lopes PA, Nikitin T, Fausto R, Almeida AT, Tavakoli M. Laser Writing of Eutectic Gallium–Indium Alloy Graphene‐Oxide Electrodes and Semitransparent Conductors. Adv Materials Technologies 2022;7:2101238. [DOI: 10.1002/admt.202101238] [Reference Citation Analysis]
11 Xie S, Zhao X, Peng L, Yu P, Zha X, Ke K, Bao R, Yang M, Yang W. In situ interfacial engineering enabled mechanically adaptive and highly stretchable liquid metal conductor. Polymer 2022;240:124482. [DOI: 10.1016/j.polymer.2021.124482] [Reference Citation Analysis]
12 Du J, Wang X, Li Y, Min Q. How an Oxide Layer Influences the Impact Dynamics of Galinstan Droplets on a Superhydrophobic Surface. Langmuir 2022;38:5645-55. [PMID: 35482446 DOI: 10.1021/acs.langmuir.2c00225] [Reference Citation Analysis]
13 Handschuh-wang S, Zhu L, Gan T, Wang T, Wang B, Zhou X. Interfacing of surfaces with gallium-based liquid metals – approaches for mitigation and augmentation of liquid metal adhesion on surfaces. Applied Materials Today 2020;21:100868. [DOI: 10.1016/j.apmt.2020.100868] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
14 Tang S, Qiao R. Liquid Metal Particles and Polymers: A Soft–Soft System with Exciting Properties. Acc Mater Res 2021;2:966-78. [DOI: 10.1021/accountsmr.1c00179] [Reference Citation Analysis]
15 Yun G, Tang S, Lu H, Cole T, Sun S, Shu J, Zheng J, Zhang Q, Zhang S, Dickey MD, Li W. Liquid Metal Hybrid Composites with High-Sensitivity and Large Dynamic Range Enabled by Micro- and Macrostructure Engineering. ACS Appl Polym Mater 2021;3:5302-15. [DOI: 10.1021/acsapm.1c01111] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
16 Liu Y, Li J, Yi L, Wang H. Polymeric Nanoshell-Stabilized Liquid Metal for Bactericidal Photonanomedicine. ACS Appl Bio Mater . [DOI: 10.1021/acsabm.1c01169] [Reference Citation Analysis]
17 Xiao Y, Wang M, Li Y, Sun Z, Liu Z, He L, Liu R. High-Adhesive Flexible Electrodes and Their Manufacture: A Review. Micromachines (Basel) 2021;12:1505. [PMID: 34945355 DOI: 10.3390/mi12121505] [Reference Citation Analysis]
18 Huang X, Xu T, Shen A, Davis TP, Qiao R, Tang SY. Engineering Polymers via Understanding the Effect of Anchoring Groups for Highly Stable Liquid Metal Nanoparticles. ACS Appl Nano Mater 2022;5:5959-71. [PMID: 35655929 DOI: 10.1021/acsanm.1c04138] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Kidanu WG, Hur J, Kim IT. Gallium-Indium-Tin Eutectic as a Self-Healing Room-Temperature Liquid Metal Anode for High-Capacity Lithium-Ion Batteries. Materials (Basel) 2021;15:168. [PMID: 35009316 DOI: 10.3390/ma15010168] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
20 Echeverria CA, Tang J, Cao Z, Esrafilzadeh D, Kalantar-zadeh K. Ag–Ga Bimetallic Nanostructures Ultrasonically Prepared from Silver–Liquid Gallium Core–Shell Systems Engineered for Catalytic Applications. ACS Appl Nano Mater 2022;5:6820-31. [DOI: 10.1021/acsanm.2c00802] [Reference Citation Analysis]
21 Liu Y, Zhang W, Wang H. Synthesis and application of core–shell liquid metal particles: a perspective of surface engineering. Mater Horiz 2021;8:56-77. [DOI: 10.1039/d0mh01117g] [Cited by in Crossref: 11] [Article Influence: 11.0] [Reference Citation Analysis]
22 Chen S, Xing W, Wang H, Cheng W, Lei Z, Zheng F, Tao P, Shang W, Fu B, Song C, Dickey MD, Deng T. A bottom-up approach to generate isotropic liquid metal network in polymer-enabled 3D thermal management. Chemical Engineering Journal 2022;439:135674. [DOI: 10.1016/j.cej.2022.135674] [Reference Citation Analysis]
23 Zuraiqi K, Parker CJ, Zavabeti A, Christofferson AJ, Maniam S, Mcconville CF, Chiang K, Daeneke T. Field’s Metal Nanodroplets for Creating Phase-Change Materials. ACS Appl Nano Mater 2022;5:5952-8. [DOI: 10.1021/acsanm.1c04066] [Reference Citation Analysis]
24 Bark H, Lee PS. Surface modification of liquid metal as an effective approach for deformable electronics and energy devices. Chem Sci 2021;12:2760-77. [PMID: 34164040 DOI: 10.1039/d0sc05310d] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Style RW, Tutika R, Kim JY, Bartlett MD. Solid–Liquid Composites for Soft Multifunctional Materials. Adv Funct Mater 2021;31:2005804. [DOI: 10.1002/adfm.202005804] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 12.5] [Reference Citation Analysis]
26 Gui Q, He Y, Wang Y. Soft Electronics Based on Liquid Conductors. Adv Electron Mater 2021;7:2000780. [DOI: 10.1002/aelm.202000780] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Xiang H, Wang T, Tang S, Wang Y, Xiao N. A novel hydrazone-based fluorescent "off-on-off" probe for relay sensing of Ga3+ and PPi ions. Spectrochim Acta A Mol Biomol Spectrosc 2021;267:120510. [PMID: 34689093 DOI: 10.1016/j.saa.2021.120510] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Fan B, Wan J, Liu Y, Tian WW, Thang SH. Functionalization of liquid metal nanoparticles via the RAFT process. Polym Chem 2021;12:3015-25. [DOI: 10.1039/d1py00257k] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
29 Allioux FM, Ghasemian MB, Xie W, O'Mullane AP, Daeneke T, Dickey MD, Kalantar-Zadeh K. Applications of liquid metals in nanotechnology. Nanoscale Horiz 2022. [PMID: 34982812 DOI: 10.1039/d1nh00594d] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
30 Zhang M, Li G, Huang L, Ran P, Huang J, Yu M, Yuqian H, Guo J, Liu Z, Ma X. Versatile fabrication of liquid metal nano-ink based flexible electronic devices. Applied Materials Today 2021;22:100903. [DOI: 10.1016/j.apmt.2020.100903] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
31 Ochirkhuyag N, Matsuda R, Song Z, Nakamura F, Endo T, Ota H. Liquid metal-based nanocomposite materials: fabrication technology and applications. Nanoscale 2021;13:2113-35. [PMID: 33465221 DOI: 10.1039/d0nr07479a] [Cited by in Crossref: 6] [Article Influence: 6.0] [Reference Citation Analysis]
32 Fan L, Lee E. Diffusiophoresis of a highly charged conducting fluid droplet. Physics of Fluids 2022;34:062013. [DOI: 10.1063/5.0098144] [Reference Citation Analysis]
33 Xu J, Guo H, Ding H, Wang Q, Tang Z, Li Z, Sun G. Printable and Recyclable Conductive Ink Based on a Liquid Metal with Excellent Surface Wettability for Flexible Electronics. ACS Appl Mater Interfaces 2021;13:7443-52. [PMID: 33528998 DOI: 10.1021/acsami.0c20549] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
34 Salueña-Berna X, Marín-Genescà M, Massagués Vidal L, Dagà-Monmany JM. Waste Aluminum Application as Energy Valorization for Hydrogen Fuel Cells for Mobile Low Power Machines Applications. Materials (Basel) 2021;14:7323. [PMID: 34885476 DOI: 10.3390/ma14237323] [Reference Citation Analysis]
35 Kwon KY, Truong VK, Krisnadi F, Im S, Ma J, Mehrabian N, Kim T, Dickey MD. Surface Modification of Gallium‐Based Liquid Metals: Mechanisms and Applications in Biomedical Sensors and Soft Actuators. Advanced Intelligent Systems 2021;3:2000159. [DOI: 10.1002/aisy.202000159] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
36 Wei Q, Sun M, Lorandi F, Yin R, Yan J, Liu T, Kowalewski T, Matyjaszewski K. Cu-Catalyzed Atom Transfer Radical Polymerization in the Presence of Liquid Metal Micro/Nanodroplets. Macromolecules 2021;54:1631-8. [DOI: 10.1021/acs.macromol.0c02702] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
37 Cole T, Tang S. Liquid metals as soft electromechanical actuators. Mater Adv 2022;3:173-85. [DOI: 10.1039/d1ma00885d] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
38 Xu B, Ye F, Chang G, Li R. A Simple and Cost-Effective Method for Producing Stable Surfactant-Coated EGaIn Liquid Metal Nanodroplets. Materials (Basel) 2020;13:E3753. [PMID: 32854305 DOI: 10.3390/ma13173753] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Chen H, Shang Z, Lu W, Li M, Tan F. A Property‐Driven Stepwise Design Strategy for Multiple Low‐Melting Alloys via Machine Learning. Adv Eng Mater 2021;23:2100612. [DOI: 10.1002/adem.202100612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Liu Y, Ji X, Liang J. Rupture stress of liquid metal nanoparticles and their applications in stretchable conductors and dielectrics. npj Flex Electron 2021;5. [DOI: 10.1038/s41528-021-00108-w] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
41 Yang J, Kwon KY, Kanetkar S, Xing R, Nithyanandam P, Li Y, Jung W, Gong W, Tuman M, Shen Q, Wang M, Ghosh T, Chatterjee K, Wang X, Zhang D, Kim T, Truong VK, Dickey MD. Skin‐Inspired Capacitive Stress Sensor with Large Dynamic Range via Bilayer Liquid Metal Elastomers. Adv Materials Technologies 2022;7:2101074. [DOI: 10.1002/admt.202101074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Long Z, Ruan J, Li S, Hu J, Hu R, Fang F, Wang F, Song Y, Sun D. Could Capacitive Behavior be Triggered in Inorganic Electrolyte‐Based All‐Solid‐State Batteries? Adv Funct Materials. [DOI: 10.1002/adfm.202205667] [Reference Citation Analysis]
43 Castilla-amorós L, Chien TC, Pankhurst JR, Buonsanti R. Modulating the Reactivity of Liquid Ga Nanoparticle Inks by Modifying Their Surface Chemistry. J Am Chem Soc . [DOI: 10.1021/jacs.1c12880] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Li Z, Guo Y, Zong Y, Li K, Wang S, Cao H, Teng C. Ga Based Particles, Alloys and Composites: Fabrication and Applications. Nanomaterials (Basel) 2021;11:2246. [PMID: 34578561 DOI: 10.3390/nano11092246] [Reference Citation Analysis]
45 Karbalaei Akbari M, Verpoort F, Zhuiykov S. Plasma-enhanced elemental enrichment of liquid metal interfaces: Towards realization of GaS nanodomains in two-dimensional Ga2O3. Applied Materials Today 2022;27:101461. [DOI: 10.1016/j.apmt.2022.101461] [Reference Citation Analysis]
46 Liao J, Majidi C. Muscle-Inspired Linear Actuators by Electrochemical Oxidation of Liquid Metal Bridges. Adv Sci (Weinh) 2022;:e2201963. [PMID: 35863909 DOI: 10.1002/advs.202201963] [Reference Citation Analysis]
47 Badloe T, Lee J, Seong J, Rho J. Tunable Metasurfaces: The Path to Fully Active Nanophotonics. Adv Photo Res 2021;2:2000205. [DOI: 10.1002/adpr.202000205] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
48 Cole T, Khoshmanesh K, Tang S. Liquid Metal Enabled Biodevices. Advanced Intelligent Systems 2021;3:2000275. [DOI: 10.1002/aisy.202000275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
49 Park YG, Lee GY, Jang J, Yun SM, Kim E, Park JU. Liquid Metal-Based Soft Electronics for Wearable Healthcare. Adv Healthc Mater 2021;10:e2002280. [PMID: 33724723 DOI: 10.1002/adhm.202002280] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 18.0] [Reference Citation Analysis]
50 Xie W, Allioux FM, Ou JZ, Miyako E, Tang SY, Kalantar-Zadeh K. Gallium-Based Liquid Metal Particles for Therapeutics. Trends Biotechnol 2021;39:624-40. [PMID: 33199046 DOI: 10.1016/j.tibtech.2020.10.005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
51 Wang B, Gao J, Jiang J, Hu Z, Hjort K, Guo Z, Wu Z. Liquid Metal Microscale Deposition enabled High Resolution and Density Epidermal Microheater for Localized Ectopic Expression in Drosophila. Adv Materials Technologies 2022;7:2100903. [DOI: 10.1002/admt.202100903] [Reference Citation Analysis]
52 Almadhoun MN, Speckbacher M, Olsen BC, Luber EJ, Sayed SY, Tornow M, Buriak JM. Bipolar Resistive Switching in Junctions of Gallium Oxide and p-type Silicon. Nano Lett 2021;21:2666-74. [PMID: 33689381 DOI: 10.1021/acs.nanolett.1c00539] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 He B, Wang P, Wang B, Du Y, Ji L, Liu S, Ye Q, Zhou F. Bioinspired zwitterionic dopamine-functionalized liquid-metal nanodroplets for antifouling application. Progress in Organic Coatings 2022;169:106922. [DOI: 10.1016/j.porgcoat.2022.106922] [Reference Citation Analysis]
54 Bhardwaj A, Verma S. Theoretical Study on Plasmonic Applications of Gallium Alloy (GaX, X = Ag, Al, Hg and In) Nanospheres and Nanoshells. Journal of Quantitative Spectroscopy and Radiative Transfer 2022. [DOI: 10.1016/j.jqsrt.2022.108109] [Reference Citation Analysis]
55 Yi B, Ai L, Hou C, Lv D, Cao C, Yao X. Liquid Metal Nanoparticles as a Highly Efficient Photoinitiator to Develop Multifunctional Hydrogel Composites. ACS Appl Mater Interfaces 2022. [PMID: 35699106 DOI: 10.1021/acsami.2c07507] [Reference Citation Analysis]
56 Bury E, Koh AS. Multimodal Deformation of Liquid Metal Multimaterial Composites as Stretchable, Dielectric Materials for Capacitive Pressure Sensing. ACS Appl Mater Interfaces 2022;14:13678-91. [PMID: 35258947 DOI: 10.1021/acsami.1c21734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
57 Li H, Qiao R, Davis TP, Tang SY. Biomedical Applications of Liquid Metal Nanoparticles: A Critical Review. Biosensors (Basel) 2020;10:E196. [PMID: 33266097 DOI: 10.3390/bios10120196] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
58 Liao J, Majidi C. Soft actuators by electrochemical oxidation of liquid metal surfaces. Soft Matter 2021;17:1921-8. [PMID: 33427274 DOI: 10.1039/d0sm01851a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
59 Dobosz A, Wójcik A, Marzec MM, Ozga P, Gancarz T. Nanometric Al 2 O 3 Layers Obtained from Liquid Metals: Implications for Sensing Devices. ACS Appl Nano Mater 2022;5:430-7. [DOI: 10.1021/acsanm.1c03271] [Reference Citation Analysis]
60 Zhang M, Wang X, Huang Z, Rao W. Liquid Metal Based Flexible and Implantable Biosensors. Biosensors (Basel) 2020;10:E170. [PMID: 33182535 DOI: 10.3390/bios10110170] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
61 Parekh DP, Fancher CM, Mohammed MG, Neumann TV, Saini D, Guerrier J, Ladd C, Hubbard E, Jones JL, Dickey MD. Liquid–Solid Mixtures of Ga Metal Infused with Cu Microparticles and Nanoparticles for Microscale and Nanoscale Patterning of Solid Metals at Room Temperature. ACS Appl Nano Mater 2020;3:12064-70. [DOI: 10.1021/acsanm.0c02566] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
62 Gao X, Fan X, Zhang J. Tunable plasmonic gallium nano liquid metal from facile and controllable synthesis. Mater Horiz 2021;8:3315-23. [PMID: 34553731 DOI: 10.1039/d1mh01101d] [Reference Citation Analysis]
63 Wang D, Liu D, Xu J, Fu J, Wu K. Highly thermoconductive yet ultraflexible polymer composites with superior mechanical properties and autonomous self-healing functionality via a binary filler strategy. Mater Horiz 2021. [PMID: 34881768 DOI: 10.1039/d1mh01746b] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
64 Shah NUH, Kong W, Casey N, Kanetkar S, Wang RY, Rykaczewski K. Gallium oxide-stabilized oil in liquid metal emulsions. Soft Matter 2021. [PMID: 34397076 DOI: 10.1039/d1sm00982f] [Reference Citation Analysis]
65 Alsaif MMYA, Haque F, Alkathiri T, Krishnamurthi V, Walia S, Hu Y, Jannat A, Mohiuddin M, Xu K, Khan MW, Ma Q, Wang Y, Pillai N, Murdoch BJ, Dickey MD, Zhang BY, Ou JZ. 3D Visible‐Light‐Driven Plasmonic Oxide Frameworks Deviated from Liquid Metal Nanodroplets. Adv Funct Materials 2021;31:2106397. [DOI: 10.1002/adfm.202106397] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Li F, Gao S, Lu Y, Asghar W, Cao J, Hu C, Yang H, Wu Y, Li S, Shang J, Liao M, Liu Y, Li RW. Bio-Inspired Multi-Mode Pain-Perceptual System (MMPPS) with Noxious Stimuli Warning, Damage Localization, and Enhanced Damage Protection. Adv Sci (Weinh) 2021;8:2004208. [PMID: 34026450 DOI: 10.1002/advs.202004208] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
67 Won P, Jeong S, Majidi C, Ko SH. Recent advances in liquid-metal-based wearable electronics and materials. iScience 2021;24:102698. [PMID: 34195573 DOI: 10.1016/j.isci.2021.102698] [Reference Citation Analysis]
68 Ge K, Niu B, Liu F, Ruan J, Xu Z, Guo D, Wang X, Lv L, Zhai T. Electrically tunable WGM lasing in a metal-dielectric core–shell hybrid microcavity. Appl Phys Lett 2022;120:232201. [DOI: 10.1063/5.0096732] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Chiew C, Morris MJ, Malakooti MH. Functional liquid metal nanoparticles: synthesis and applications. Mater Adv 2021;2:7799-819. [DOI: 10.1039/d1ma00789k] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
70 Cao C, Huang X, Lv D, Ai L, Chen W, Hou C, Yi B, Luo J, Yao X. Ultrastretchable conductive liquid metal composites enabled by adaptive interfacial polarization. Mater Horiz 2021;8:3399-408. [PMID: 34679157 DOI: 10.1039/d1mh00924a] [Reference Citation Analysis]
71 Kim S, Lee J. Indentation and Temperature Response of Liquid Metal/Hydrogel Composites. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.02.059] [Reference Citation Analysis]
72 Zhang S, Zhu J, Zhang Y, Chen Z, Song C, Li J, Yi N, Qiu D, Guo K, Zhang C, Pan T, Lin Y, Zhou H, Long H, Yang H, Cheng H. Standalone stretchable RF systems based on asymmetric 3D microstrip antennas with on-body wireless communication and energy harvesting. Nano Energy 2022;96:107069. [DOI: 10.1016/j.nanoen.2022.107069] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
73 Song M, Mehrabian N, Karuturi S, Dickey MD. Jumping liquid metal droplets controlled electrochemically. Appl Phys Lett 2021;118:081601. [DOI: 10.1063/5.0036416] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
74 Song M, Daniels KE, Kiani A, Rashid‐nadimi S, Dickey MD. Interfacial Tension Modulation of Liquid Metal via Electrochemical Oxidation. Advanced Intelligent Systems 2021;3:2100024. [DOI: 10.1002/aisy.202100024] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
75 Centurion F, Namivandi-zangeneh R, Flores N, Tajik M, Merhebi S, Abbasi R, Mayyas M, Allioux F, Tang J, Donald WA, Boyer C, Dickey MD, Kalantar-zadeh K, Rahim MA. Liquid Metal-Triggered Assembly of Phenolic Nanocoatings with Antioxidant and Antibacterial Properties. ACS Appl Nano Mater 2021;4:2987-98. [DOI: 10.1021/acsanm.1c00125] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
76 Yun G, Tang S, Lu H, Zhang S, Dickey MD, Li W. Hybrid‐Filler Stretchable Conductive Composites: From Fabrication to Application. Small Science 2021;1:2000080. [DOI: 10.1002/smsc.202000080] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 18.0] [Reference Citation Analysis]
77 Gao Z, Chen Y, Dong C, Chen F, Huang M, Ma H, Wang Y. Insight into the interatomic competitive mechanism for interfacial stability of room temperature liquid GaInSn/Cu electrode. Materials Chemistry and Physics 2021;270:124809. [DOI: 10.1016/j.matchemphys.2021.124809] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]