BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qian Y, Song J, Zhao X, Chen W, Ouyang Y, Yuan W, Fan C. 3D Fabrication with Integration Molding of a Graphene Oxide/Polycaprolactone Nanoscaffold for Neurite Regeneration and Angiogenesis. Adv Sci (Weinh) 2018;5:1700499. [PMID: 29721407 DOI: 10.1002/advs.201700499] [Cited by in Crossref: 91] [Cited by in F6Publishing: 99] [Article Influence: 22.8] [Reference Citation Analysis]
Number Citing Articles
1 Ma Y, Wang H, Wang Q, Cao X, Gao H. Piezoelectric conduit combined with multi-channel conductive scaffold for peripheral nerve regeneration. Chemical Engineering Journal 2023;452:139424. [DOI: 10.1016/j.cej.2022.139424] [Reference Citation Analysis]
2 Riela L, Cucci LM, Hansson Ö, Marzo T, La Mendola D, Satriano C. A Graphene Oxide-Angiogenin Theranostic Nanoplatform for the Therapeutic Targeting of Angiogenic Processes: The Effect of Copper-Supplemented Medium. Inorganics 2022;10:188. [DOI: 10.3390/inorganics10110188] [Reference Citation Analysis]
3 Sun R, Wang B, Zhang L, Lang Y, Chang M. Engineering Three-Dimensional Bendable Helix Conduits for Peripheral Nerve Regeneration via Hybrid Electrotechnologies. ACS Materials Lett . [DOI: 10.1021/acsmaterialslett.2c00698] [Reference Citation Analysis]
4 Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS Omega. [DOI: 10.1021/acsomega.2c03171] [Reference Citation Analysis]
5 Li L, Hao R, Qin J, Song J, Chen X, Rao F, Zhai J, Zhao Y, Zhang L, Xue J. Electrospun Fibers Control Drug Delivery for Tissue Regeneration and Cancer Therapy. Adv Fiber Mater . [DOI: 10.1007/s42765-022-00198-9] [Reference Citation Analysis]
6 Hui Y, Yan Z, Yang H, Xu X, Yuan W, Qian Y. Graphene Family Nanomaterials for Stem Cell Neurogenic Differentiation and Peripheral Nerve Regeneration. ACS Appl Bio Mater . [DOI: 10.1021/acsabm.2c00663] [Reference Citation Analysis]
7 Li X, Jiang H, He N, Yuan W, Qian Y, Ouyang Y. Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering. Cyborg and Bionic Systems 2022;2022:1-20. [DOI: 10.34133/2022/9892526] [Reference Citation Analysis]
8 Holmannova D, Borsky P, Svadlakova T, Borska L, Fiala Z. Carbon Nanoparticles and Their Biomedical Applications. Applied Sciences 2022;12:7865. [DOI: 10.3390/app12157865] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Kong L, Gao X, Qian Y, Sun W, You Z, Fan C. Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development. Theranostics 2022;12:4993-5014. [PMID: 35836812 DOI: 10.7150/thno.74571] [Reference Citation Analysis]
10 Gong B, Zhang X, Zahrani AA, Gao W, Ma G, Zhang L, Xue J. Neural tissue engineering: From bioactive scaffolds and in situ monitoring to regeneration. Exploration 2022;2:20210035. [DOI: 10.1002/exp.20210035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
11 Xiong W, Wang S, Wei Z, Cai Y, Li B, Lin F, Xia D. Knowledge Domain and Hotspots Predict Concerning Electroactive Biomaterials Applied in Tissue Engineering: A Bibliometric and Visualized Analysis From 2011 to 2021. Front Bioeng Biotechnol 2022;10:904629. [DOI: 10.3389/fbioe.2022.904629] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Su Q, Nasser MI, He J, Deng G, Ouyang Q, Zhuang D, Deng Y, Hu H, Liu N, Li Z, Zhu P, Li G. Engineered Schwann Cell-Based Therapies for Injury Peripheral Nerve Reconstruction. Front Cell Neurosci 2022;16:865266. [DOI: 10.3389/fncel.2022.865266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Huang K, Zhu T, Nie J, Du J, Liu Y, Bao Y, Chen S, Hu S. Microporous Spongy Scaffolds Based on Biodegradable Elastic Polyurethanes for the Migration and Growth of Host Cells. ACS Appl Polym Mater 2022;4:3942-51. [DOI: 10.1021/acsapm.2c00398] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Deng P, Chen F, Zhang H, Chen Y, Zhou J. Multifunctional Double-Layer Composite Hydrogel Conduit Based on Chitosan for Peripheral Nerve Repairing. Adv Healthc Mater 2022;:e2200115. [PMID: 35396930 DOI: 10.1002/adhm.202200115] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
15 Zhang G, Huang J, Hao S, Zhang J, Zhou N. Radix Astragalus Polysaccharide Accelerates Angiogenesis by Activating AKT/eNOS to Promote Nerve Regeneration and Functional Recovery. Front Pharmacol 2022;13:838647. [DOI: 10.3389/fphar.2022.838647] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Loret T, de Luna LAV, Fordham A, Arshad A, Barr K, Lozano N, Kostarelos K, Bussy C. Innate but Not Adaptive Immunity Regulates Lung Recovery from Chronic Exposure to Graphene Oxide Nanosheets. Adv Sci (Weinh) 2022;9:e2104559. [PMID: 35166457 DOI: 10.1002/advs.202104559] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ren J, Tang X, Wang T, Wei X, Zhang J, Lu L, Liu Y, Yang B. A Dual-Modal Magnetic Resonance/Photoacoustic Imaging Tracer for Long-Term High-Precision Tracking and Facilitating Repair of Peripheral Nerve Injuries. Adv Healthc Mater 2022;:e2200183. [PMID: 35306758 DOI: 10.1002/adhm.202200183] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Nan L, Lin Z, Wang F, Jin X, Fang J, Xu B, Liu S, Zhang F, Wu Z, Zhou Z, Chen F, Cao W, Wang J, Liu J. Ti3C2Tx MXene-Coated Electrospun PCL Conduits for Enhancing Neurite Regeneration and Angiogenesis. Front Bioeng Biotechnol 2022;10:850650. [DOI: 10.3389/fbioe.2022.850650] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Chen C, Xi Y, Weng Y. Progress in the Development of Graphene-Based Biomaterials for Tissue Engineering and Regeneration. Materials (Basel) 2022;15:2164. [PMID: 35329615 DOI: 10.3390/ma15062164] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
20 Entezari M, Mozafari M, Bakhtiyari M, Moradi F, Bagher Z, Soleimani M. Three-dimensional-printed polycaprolactone/polypyrrole conducting scaffolds for differentiation of human olfactory ecto-mesenchymal stem cells into Schwann cell-like phenotypes and promotion of neurite outgrowth. J Biomed Mater Res A 2022. [PMID: 35075781 DOI: 10.1002/jbm.a.37361] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
21 Molino BZ, Fukuda J, Molino PJ, Wallace GG. Redox Polymers for Tissue Engineering. Front Med Technol 2021;3:669763. [PMID: 35047925 DOI: 10.3389/fmedt.2021.669763] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Jiang H, Wang X, Li X, Jin Y, Yan Z, Yao X, Yuan W, Qian Y, Ouyang Y. A multifunctional ATP-generating system by reduced graphene oxide-based scaffold repairs neuronal injury by improving mitochondrial function and restoring bioelectricity conduction. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100211] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Muthukrishnan L, Sagadevan S, Hossain MM. Metal oxide-based fiber technology in the pharmaceutical and medical chemistry. Metal Oxides for Optoelectronics and Optics-Based Medical Applications 2022. [DOI: 10.1016/b978-0-323-85824-3.00005-1] [Reference Citation Analysis]
24 Abdal-hay A, Sheikh FA, Gómez-cerezo N, Alneairi A, Luqman M, Pant HR, Ivanovski S. A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. European Polymer Journal 2022;162:110892. [DOI: 10.1016/j.eurpolymj.2021.110892] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
25 Lotfi R, Eslahi N, Koohkhezri M, Moghadasi H. 3D printing of graphene polymer composites. Innovations in Graphene-Based Polymer Composites 2022. [DOI: 10.1016/b978-0-12-823789-2.00010-8] [Reference Citation Analysis]
26 Minář J, Doležal J, Brožek J. The effect of nanocomposite synthesis and the drying procedure of graphene oxide dispersion on the polycaprolactone/graphene oxide nanocomposite properties. Polymers and Polymer Composites 2022;30:096739112110689. [DOI: 10.1177/09673911211068923] [Reference Citation Analysis]
27 Aleemardani M, Zare P, Seifalian A, Bagher Z, Seifalian AM. Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury. Biomedicines 2022;10:73. [DOI: 10.3390/biomedicines10010073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
28 Yao X, Yan Z, Li X, Li Y, Ouyang Y, Fan C. Tacrolimus-Induced Neurotrophic Differentiation of Adipose-Derived Stem Cells as Novel Therapeutic Method for Peripheral Nerve Injury. Front Cell Neurosci 2021;15:799151. [PMID: 34955758 DOI: 10.3389/fncel.2021.799151] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Huang Q, Cai Y, Yang X, Li W, Pu H, Liu Z, Liu H, Tamtaji M, Xu F, Sheng L, Kim T, Zhao S, Sun D, Qin J, Luo Z, Lu X. Graphene foam/hydrogel scaffolds for regeneration of peripheral nerve using ADSCs in a diabetic mouse model. Nano Res . [DOI: 10.1007/s12274-021-3961-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
30 Xu W, Zhang Z, Lu H, Wu Y, Liu J, Liu S, Yang W. Biocompatible Polyurethane Conduit Grafted with Vascular Endothelial Growth Factor-Loaded Hydrogel Repairs the Peripheral Nerve Defect in Rats. Macromol Biosci 2021;:e2100397. [PMID: 34863047 DOI: 10.1002/mabi.202100397] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Sun J, Li L, Xing F, Yang Y, Gong M, Liu G, Wu S, Luo R, Duan X, Liu M, Zou M, Xiang Z. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration. Stem Cell Res Ther 2021;12:591. [PMID: 34863288 DOI: 10.1186/s13287-021-02634-w] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
32 Tupone MG, Panella G, d'Angelo M, Castelli V, Caioni G, Catanesi M, Benedetti E, Cimini A. An Update on Graphene-Based Nanomaterials for Neural Growth and Central Nervous System Regeneration. Int J Mol Sci 2021;22:13047. [PMID: 34884851 DOI: 10.3390/ijms222313047] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Jin F, Li T, Yuan T, Du L, Lai C, Wu Q, Zhao Y, Sun F, Gu L, Wang T, Feng ZQ. Physiologically Self-Regulated, Fully Implantable, Battery-Free System for Peripheral Nerve Restoration. Adv Mater 2021;33:e2104175. [PMID: 34608668 DOI: 10.1002/adma.202104175] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
34 Zhan L, Deng J, Ke Q, Li X, Ouyang Y, Huang C, Liu X, Qian Y. Grooved Fibers: Preparation Principles Through Electrospinning and Potential Applications. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00116-5] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 19.0] [Reference Citation Analysis]
35 Yan Z, Chen C, Rosso G, Qian Y, Fan C. Two-Dimensional Nanomaterials for Peripheral Nerve Engineering: Recent Advances and Potential Mechanisms. Front Bioeng Biotechnol 2021;9:746074. [PMID: 34820361 DOI: 10.3389/fbioe.2021.746074] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021;10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Li W, Mao M, Hu N, Wang J, Huang J, Zhang W, Gu S. A graphene oxide-copper nanocomposite for the regeneration of the dentin-pulp complex: An odontogenic and neurovascularization-inducing material. Chemical Engineering Journal 2021;417:129299. [DOI: 10.1016/j.cej.2021.129299] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
38 Halim A, Qu KY, Zhang XF, Huang NP. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2021;7:3503-29. [PMID: 34291638 DOI: 10.1021/acsbiomaterials.1c00490] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
39 Najafi Z, Kharaziha M, Karimzadeh F, Shapiri A. Mechanical and biological performance of rainbow trout collagen‐boron nitride nanocomposite scaffolds for soft tissue engineering. J Appl Polym Sci 2021;138:50664. [DOI: 10.1002/app.50664] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Mansouri N, Al-Sarawi S, Losic D, Mazumdar J, Clark J, Gronthos S, O'Hare Doig R. Biodegradable and biocompatible graphene-based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials. Biotechnol Bioeng 2021. [PMID: 34264518 DOI: 10.1002/bit.27891] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
41 Yao X, Qian Y, Fan C. Electroactive nanomaterials in the peripheral nerve regeneration. J Mater Chem B 2021. [PMID: 34195746 DOI: 10.1039/d1tb00686j] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
42 Yao X, Yan Z, Wang X, Jiang H, Qian Y, Fan C. The influence of reduced graphene oxide on stem cells: a perspective in peripheral nerve regeneration. Regen Biomater 2021;8:rbab032. [PMID: 34188955 DOI: 10.1093/rb/rbab032] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
43 Qian Y, Wang X, Song J, Chen W, Chen S, Jin Y, Ouyang Y, Yuan WE, Fan C. Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds. NPJ Regen Med 2021;6:31. [PMID: 34078912 DOI: 10.1038/s41536-021-00142-2] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 31.0] [Reference Citation Analysis]
44 Shrestha S, Shrestha BK, Joong OK, Park CH, Kim CS. Para-substituted sulfonic acid-doped protonated emeraldine salt nanobuds: a potent neural interface targeting PC12 cell interactions and promotes neuronal cell differentiation. Biomater Sci 2021;9:1691-704. [PMID: 33410823 DOI: 10.1039/d0bm01034k] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
45 Xavier Mendes A, Moraes Silva S, O'Connell CD, Duchi S, Quigley AF, Kapsa RMI, Moulton SE. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel. ACS Biomater Sci Eng 2021;7:2279-95. [PMID: 33956434 DOI: 10.1021/acsbiomaterials.0c01734] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
46 Zheng Y, Hong X, Wang J, Feng L, Fan T, Guo R, Zhang H. 2D Nanomaterials for Tissue Engineering and Regenerative Nanomedicines: Recent Advances and Future Challenges. Adv Healthc Mater 2021;10:e2001743. [PMID: 33511775 DOI: 10.1002/adhm.202001743] [Cited by in Crossref: 43] [Cited by in F6Publishing: 44] [Article Influence: 43.0] [Reference Citation Analysis]
47 Huang L, Yang X, Deng L, Ying D, Lu A, Zhang L, Yu A, Duan B. Biocompatible Chitin Hydrogel Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair. ACS Appl Mater Interfaces 2021;13:16106-17. [PMID: 33787211 DOI: 10.1021/acsami.1c01904] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 22.0] [Reference Citation Analysis]
48 Grijalvo S, Díaz DD. Graphene-based hybrid materials as promising scaffolds for peripheral nerve regeneration. Neurochem Int 2021;147:105005. [PMID: 33667593 DOI: 10.1016/j.neuint.2021.105005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
49 Jeong HJ, Yun Y, Lee SJ, Ha Y, Gwak SJ. Biomaterials and strategies for repairing spinal cord lesions. Neurochem Int 2021;144:104973. [PMID: 33497713 DOI: 10.1016/j.neuint.2021.104973] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
50 Mansouri N, Al-sarawi S, Losic D, Mazumdar J, Clark J, Gronthos S, O’hare Doig R. Biodegradable and Biocompatible Graphene-based Scaffolds for Functional Neural Tissue Engineering: A Strategy Approach Using Dental Pulp Stem Cells and Biomaterials.. [DOI: 10.1101/2021.01.12.426431] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Nosrati H, Aramideh Khouy R, Nosrati A, Khodaei M, Banitalebi-Dehkordi M, Ashrafi-Dehkordi K, Sanami S, Alizadeh Z. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J Nanobiotechnology 2021;19:1. [PMID: 33397416 DOI: 10.1186/s12951-020-00755-7] [Cited by in Crossref: 134] [Cited by in F6Publishing: 143] [Article Influence: 134.0] [Reference Citation Analysis]
52 Huang Q, Cai Y, Zhang X, Liu J, Liu Z, Li B, Wong H, Xu F, Sheng L, Sun D, Qin J, Luo Z, Lu X. Aligned Graphene Mesh-Supported Double Network Natural Hydrogel Conduit Loaded with Netrin-1 for Peripheral Nerve Regeneration. ACS Appl Mater Interfaces 2021;13:112-22. [PMID: 33397079 DOI: 10.1021/acsami.0c16391] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 24.0] [Reference Citation Analysis]
53 Yang B, Wang PB, Mu N, Ma K, Wang S, Yang CY, Huang ZB, Lai Y, Feng H, Yin GF, Chen TN, Hu CS. Graphene oxide-composited chitosan scaffold contributes to functional recovery of injured spinal cord in rats. Neural Regen Res 2021;16:1829-35. [PMID: 33510090 DOI: 10.4103/1673-5374.306095] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
54 Yao Z, Xue T, Xiong H, Cai C, Liu X, Wu F, Liu S, Fan C. Promotion of collagen deposition during skin healing through Smad3/mTOR pathway by parathyroid hormone-loaded microneedle. Mater Sci Eng C Mater Biol Appl 2021;119:111446. [PMID: 33321586 DOI: 10.1016/j.msec.2020.111446] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
55 Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, Akbarian M, Farjadian F, Karimi M. Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat? Int J Nanomedicine 2020;15:9469-96. [PMID: 33281443 DOI: 10.2147/IJN.S265876] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 26.0] [Reference Citation Analysis]
56 Paliwal SR, Kenwat R, Maiti S, Paliwal R. Nanotheranostics for Cancer Therapy and Detection: State of the Art. Curr Pharm Des 2020;26:5503-17. [PMID: 33200696 DOI: 10.2174/1381612826666201116120422] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
57 Yuan Y, Li D, Yu F, Kang X, Xu H, Zhang P. Effects of Akt/mTOR/p70S6K Signaling Pathway Regulation on Neuron Remodeling Caused by Translocation Repair. Front Neurosci 2020;14:565870. [PMID: 33132828 DOI: 10.3389/fnins.2020.565870] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
58 Wang J, Cheng Y, Wang H, Wang Y, Zhang K, Fan C, Wang H, Mo X. Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration. Acta Biomater 2020;117:180-91. [PMID: 33007489 DOI: 10.1016/j.actbio.2020.09.037] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 8.5] [Reference Citation Analysis]
59 Wang J, Xiong H, Zhu T, Liu Y, Pan H, Fan C, Zhao X, Lu WW. Bioinspired Multichannel Nerve Guidance Conduit Based on Shape Memory Nanofibers for Potential Application in Peripheral Nerve Repair. ACS Nano 2020;14:12579-95. [PMID: 32786254 DOI: 10.1021/acsnano.0c03570] [Cited by in Crossref: 47] [Cited by in F6Publishing: 52] [Article Influence: 23.5] [Reference Citation Analysis]
60 Poyyakkara A, Thekkeveedu S, S. Shankar S, Sameer Kumar V. Regulation of Angiogenesis Using Nanomaterial Based Formulations: An Emerging Therapeutic Strategy to Manage Multiple Pathological Conditions. Theranostics - An Old Concept in New Clothing [Working Title] 2020. [DOI: 10.5772/intechopen.94151] [Reference Citation Analysis]
61 Choi JH, Kim TH, El-Said WA, Lee JH, Yang L, Conley B, Choi JW, Lee KB. In Situ Detection of Neurotransmitters from Stem Cell-Derived Neural Interface at the Single-Cell Level via Graphene-Hybrid SERS Nanobiosensing. Nano Lett 2020;20:7670-9. [PMID: 32870013 DOI: 10.1021/acs.nanolett.0c03205] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
62 Jiang H, Qian Y, Fan C, Ouyang Y. Polymeric Guide Conduits for Peripheral Nerve Tissue Engineering. Front Bioeng Biotechnol 2020;8:582646. [PMID: 33102465 DOI: 10.3389/fbioe.2020.582646] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 9.5] [Reference Citation Analysis]
63 Liu J, Zhang B, Li L, Yin J, Fu J. Additive-lathe 3D bioprinting of bilayered nerve conduits incorporated with supportive cells. Bioact Mater 2021;6:219-29. [PMID: 32913930 DOI: 10.1016/j.bioactmat.2020.08.010] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
64 Puhl DL, Funnell JL, D'Amato AR, Bao J, Zagorevski DV, Pressman Y, Morone D, Haggerty AE, Oudega M, Gilbert RJ. Aligned Fingolimod-Releasing Electrospun Fibers Increase Dorsal Root Ganglia Neurite Extension and Decrease Schwann Cell Expression of Promyelinating Factors. Front Bioeng Biotechnol 2020;8:937. [PMID: 32923432 DOI: 10.3389/fbioe.2020.00937] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
65 Li X, Yang W, Xie H, Wang J, Zhang L, Wang Z, Wang L. CNT/Sericin Conductive Nerve Guidance Conduit Promotes Functional Recovery of Transected Peripheral Nerve Injury in a Rat Model. ACS Appl Mater Interfaces 2020;12:36860-72. [PMID: 32649170 DOI: 10.1021/acsami.0c08457] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
66 Qian Y, Cheng Y, Song J, Xu Y, Yuan WE, Fan C, Zheng X. Mechano-Informed Biomimetic Polymer Scaffolds by Incorporating Self-Powered Zinc Oxide Nanogenerators Enhance Motor Recovery and Neural Function. Small 2020;16:e2000796. [PMID: 32633072 DOI: 10.1002/smll.202000796] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 19.5] [Reference Citation Analysis]
67 Tiwari S, Patil R, Dubey SK, Bahadur P. Graphene nanosheets as reinforcement and cell-instructive material in soft tissue scaffolds. Adv Colloid Interface Sci 2020;281:102167. [PMID: 32361407 DOI: 10.1016/j.cis.2020.102167] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
68 Pillai MM, Sathishkumar G, Houshyar S, Senthilkumar R, Quigley A, Shanthakumari S, Padhye R, Bhattacharyya A. Nanocomposite-Coated Silk-Based Artificial Conduits: The Influence of Structures on Regeneration of the Peripheral Nerve. ACS Appl Bio Mater 2020;3:4454-64. [DOI: 10.1021/acsabm.0c00430] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
69 Rostami F, Tamjid E, Behmanesh M. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 2020;115:111102. [PMID: 32600706 DOI: 10.1016/j.msec.2020.111102] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 14.5] [Reference Citation Analysis]
70 Wang W, Liu Y, Yang C, Jia W, Qi X, Liu C, Li X. Delivery of Salvianolic Acid B for Efficient Osteogenesis and Angiogenesis from Silk Fibroin Combined with Graphene Oxide. ACS Biomater Sci Eng 2020;6:3539-49. [PMID: 33463186 DOI: 10.1021/acsbiomaterials.0c00558] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
71 Yi J, Choe G, Park J, Lee JY. Graphene oxide-incorporated hydrogels for biomedical applications. Polym J 2020;52:823-37. [DOI: 10.1038/s41428-020-0350-9] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 20.0] [Reference Citation Analysis]
72 Wang Y, Yu H, Liu H, Fan Y. Double coating of graphene oxide–polypyrrole on silk fibroin scaffolds for neural tissue engineering. Journal of Bioactive and Compatible Polymers 2020;35:216-27. [DOI: 10.1177/0883911520913905] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
73 Bordoni M, Scarian E, Rey F, Gagliardi S, Carelli S, Pansarasa O, Cereda C. Biomaterials in Neurodegenerative Disorders: A Promising Therapeutic Approach. Int J Mol Sci 2020;21:E3243. [PMID: 32375302 DOI: 10.3390/ijms21093243] [Cited by in Crossref: 27] [Cited by in F6Publishing: 30] [Article Influence: 13.5] [Reference Citation Analysis]
74 Fang Z, Ge X, Chen X, Xu Y, Yuan WE, Ouyang Y. Enhancement of sciatic nerve regeneration with dual delivery of vascular endothelial growth factor and nerve growth factor genes. J Nanobiotechnology 2020;18:46. [PMID: 32169062 DOI: 10.1186/s12951-020-00606-5] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 10.5] [Reference Citation Analysis]
75 Cui L, Liang J, Liu H, Zhang K, Li J. Nanomaterials for Angiogenesis in Skin Tissue Engineering. Tissue Eng Part B Rev 2020;26:203-16. [PMID: 31964266 DOI: 10.1089/ten.TEB.2019.0337] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 14.0] [Reference Citation Analysis]
76 Zhang D, Yang W, Wang C, Zheng H, Liu Z, Chen Z, Gao C. Methylcobalamin-Loaded PLCL Conduits Facilitate the Peripheral Nerve Regeneration. Macromol Biosci 2020;20:e1900382. [PMID: 32058665 DOI: 10.1002/mabi.201900382] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
77 Ghorbani F, Zamanian A, Torabinejad B. The effect of oxygen plasma pretreatment on the properties of mussel-inspired polydopamine-decorated polyurethane nanofibers. Journal of Polymer Engineering 2020;40:109-19. [DOI: 10.1515/polyeng-2019-0219] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
78 Zhang D, Yao Y, Duan Y, Yu X, Shi H, Nakkala JR, Zuo X, Hong L, Mao Z, Gao C. Surface-Anchored Graphene Oxide Nanosheets on Cell-Scale Micropatterned Poly( d , l -lactide- co -caprolactone) Conduits Promote Peripheral Nerve Regeneration. ACS Appl Mater Interfaces 2020;12:7915-30. [DOI: 10.1021/acsami.9b20321] [Cited by in Crossref: 35] [Cited by in F6Publishing: 37] [Article Influence: 17.5] [Reference Citation Analysis]
79 Fang X, Deng J, Zhang W, Guo H, Yu F, Rao F, Li Q, Zhang P, Bai S, Jiang B. Conductive conduit small gap tubulization for peripheral nerve repair. RSC Adv 2020;10:16769-75. [DOI: 10.1039/d0ra02143a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
80 Melo SF, Neves SC, Pereira AT, Borges I, Granja PL, Magalhães FD, Gonçalves IC. Incorporation of graphene oxide into poly(ɛ-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Mater Sci Eng C Mater Biol Appl 2020;109:110537. [PMID: 32228892 DOI: 10.1016/j.msec.2019.110537] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
81 Li J, Liu X, Crook J, Wallace G. 3D graphene-containing structures for tissue engineering. Materials Today Chemistry 2019;14:100199. [DOI: 10.1016/j.mtchem.2019.100199] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
82 Qian Y, Yao Z, Wang X, Cheng Y, Fang Z, Yuan WE, Fan C, Ouyang Y. (-)-Epigallocatechin gallate-loaded polycaprolactone scaffolds fabricated using a 3D integrated moulding method alleviate immune stress and induce neurogenesis. Cell Prolif 2020;53:e12730. [PMID: 31746040 DOI: 10.1111/cpr.12730] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
83 Barui AK, Nethi SK, Haque S, Basuthakur P, Patra CR. Recent Development of Metal Nanoparticles for Angiogenesis Study and Their Therapeutic Applications. ACS Appl Bio Mater 2019;2:5492-511. [DOI: 10.1021/acsabm.9b00587] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 6.7] [Reference Citation Analysis]
84 Jiang L, Wang Y, Liu Z, Ma C, Yan H, Xu N, Gang F, Wang X, Zhao L, Sun X. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application. Tissue Eng Part B Rev 2019;25:398-411. [PMID: 31115274 DOI: 10.1089/ten.TEB.2019.0100] [Cited by in Crossref: 46] [Cited by in F6Publishing: 46] [Article Influence: 15.3] [Reference Citation Analysis]
85 Hsu RS, Chen PY, Fang JH, Chen YY, Chang CW, Lu YJ, Hu SH. Adaptable Microporous Hydrogels of Propagating NGF-Gradient by Injectable Building Blocks for Accelerated Axonal Outgrowth. Adv Sci (Weinh) 2019;6:1900520. [PMID: 31453065 DOI: 10.1002/advs.201900520] [Cited by in Crossref: 58] [Cited by in F6Publishing: 60] [Article Influence: 19.3] [Reference Citation Analysis]
86 Wang W, Liu Y, Yang C, Qi X, Li S, Liu C, Li X. Mesoporous bioactive glass combined with graphene oxide scaffolds for bone repair. Int J Biol Sci 2019;15:2156-69. [PMID: 31592233 DOI: 10.7150/ijbs.35670] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
87 Ma C, Jiang L, Wang Y, Gang F, Xu N, Li T, Liu Z, Chi Y, Wang X, Zhao L, Feng Q, Sun X. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. Materials (Basel) 2019;12:E2491. [PMID: 31390733 DOI: 10.3390/ma12152491] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
88 Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019;14:5753-83. [PMID: 31413573 DOI: 10.2147/IJN.S192779] [Cited by in Crossref: 81] [Cited by in F6Publishing: 82] [Article Influence: 27.0] [Reference Citation Analysis]
89 Qian Y, Cheng Y, Ouyang Y, Yuan W, Fan C. Multilayered spraying and gradient dotting of nanodiamond–polycaprolactone guidance channels for restoration of immune homeostasis. NPG Asia Mater 2019;11. [DOI: 10.1038/s41427-019-0136-8] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
90 Dharmadhikari B, Wu Q, Debnath D, Patra P. Interaction of Graphene And Polycaprolactone at Atomic Level. 2019 IEEE Long Island Systems, Applications and Technology Conference (LISAT) 2019. [DOI: 10.1109/lisat.2019.8816824] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
91 Wang J, Zheng W, Chen L, Zhu T, Shen W, Fan C, Wang H, Mo X. Enhancement of Schwann Cells Function Using Graphene-Oxide-Modified Nanofiber Scaffolds for Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2019;5:2444-56. [DOI: 10.1021/acsbiomaterials.8b01564] [Cited by in Crossref: 35] [Cited by in F6Publishing: 38] [Article Influence: 11.7] [Reference Citation Analysis]
92 Abzan N, Kharaziha M, Labbaf S. Development of three-dimensional piezoelectric polyvinylidene fluoride-graphene oxide scaffold by non-solvent induced phase separation method for nerve tissue engineering. Materials & Design 2019;167:107636. [DOI: 10.1016/j.matdes.2019.107636] [Cited by in Crossref: 59] [Cited by in F6Publishing: 61] [Article Influence: 19.7] [Reference Citation Analysis]
93 Joshi K, Mazumder B, Chattopadhyay P, Bora NS, Goyary D, Karmakar S. Graphene Family of Nanomaterials: Reviewing Advanced Applications in Drug delivery and Medicine. CDD 2019;16:195-214. [DOI: 10.2174/1567201815666181031162208] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
94 Wang J, Cheng Y, Chen L, Zhu T, Ye K, Jia C, Wang H, Zhu M, Fan C, Mo X. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomater 2019;84:98-113. [PMID: 30471474 DOI: 10.1016/j.actbio.2018.11.032] [Cited by in Crossref: 116] [Cited by in F6Publishing: 115] [Article Influence: 38.7] [Reference Citation Analysis]
95 Qian Y, Han Q, Zhao X, Li H, Yuan WE, Fan C. Asymmetrical 3D Nanoceria Channel for Severe Neurological Defect Regeneration. iScience 2019;12:216-31. [PMID: 30703735 DOI: 10.1016/j.isci.2019.01.013] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 11.7] [Reference Citation Analysis]
96 Li L, Liu Y, Li H, Guo X, He X, Geng S, Zhao H, Peng X, Shi D, Xiong B, Zhou G, Zhao Y, Zheng C, Yang X. Rational design of temperature-sensitive blood-vessel-embolic nanogels for improving hypoxic tumor microenvironment after transcatheter arterial embolization. Theranostics 2018;8:6291-306. [PMID: 30613298 DOI: 10.7150/thno.28845] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]