BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu W, Shao X, Zhao J, Wu M. Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency. Adv Sci (Weinh) 2017;4:1700113. [PMID: 28725533 DOI: 10.1002/advs.201700113] [Cited by in Crossref: 86] [Cited by in F6Publishing: 90] [Article Influence: 17.2] [Reference Citation Analysis]
Number Citing Articles
1 Pang E, Zhao S, Wang B, Niu G, Song X, Lan M. Strategies to construct efficient singlet oxygen-generating photosensitizers. Coordination Chemistry Reviews 2022;472:214780. [DOI: 10.1016/j.ccr.2022.214780] [Reference Citation Analysis]
2 Chen H, Wen K, Lu Y, Zhang X, Shi Y, Shi Q, Ma H, Peng Q, Huang H. White-light-driven fluorescence switch for super-resolution imaging guided photodynamic and photoacid therapy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1369-9] [Reference Citation Analysis]
3 Yan T, Alimu G, Zhu L, Fan H, Zhang L, Du Z, Ma R, Chen S, Alifu N, Zhang X. PpIX/IR-820 Dual-Modal Therapeutic Agents for Enhanced PDT/PTT Synergistic Therapy in Cervical Cancer. ACS Omega. [DOI: 10.1021/acsomega.2c02977] [Reference Citation Analysis]
4 Božinović K, Nestić D, Michail E, Ferger M, Košćak M, Lambert C, Majhen D, Marder TB, Piantanida I. Diethynylarene-linked bis(triarylborane)cations as theranostic agents for tumor cell and virus-targeted photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 2022;234:112523. [DOI: 10.1016/j.jphotobiol.2022.112523] [Reference Citation Analysis]
5 Jena S, Tulsiyan KD, Kumari A, Das R, Biswal HS. Thiolumazines as Heavy-Atom-Free Photosensitizers for Applications in Daylight Photodynamic Therapy: Insights from Ultrafast Excited-State Dynamics. J Phys Chem B 2022. [PMID: 35938784 DOI: 10.1021/acs.jpcb.2c03489] [Reference Citation Analysis]
6 Zhao T, Hu X, Ma R, Dong F, Liu T, Li L, Yan H, Xu Y, Liu W, Zou B, Tang B. Photovoltaic polymer Photosensitizer-Doped Nano-Therapeutic reagent for in vivo enhanced bioimaging guided photodynamic therapy. Chemical Engineering Journal 2022;441:135983. [DOI: 10.1016/j.cej.2022.135983] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
7 Pan C, Zhao W, Zhao X, Liu Z, Li X, Lyu Y, Wu X, Zhu Z, Zhu W, Wang Q. Type I photosensitizer based on AIE chromophore tricyano-methylene-pyridine for photodynamic therapy. Green Chemical Engineering 2022. [DOI: 10.1016/j.gce.2022.07.004] [Reference Citation Analysis]
8 Liu F, Zhu D, Li Y, Kong M, Li Y, Luo J, Kong L. A multifunctional near-infrared fluorescent probe for in vitro and in vivo imaging of γ-glutamyltranspeptidase and photodynamic cancer therapy. Sensors and Actuators B: Chemical 2022;363:131838. [DOI: 10.1016/j.snb.2022.131838] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Yu YY, Quan WZ, Cao Y, Niu Q, Lu Y, Xiao X, Cheng L. Boosting the singlet oxygen production from H2O2 activation with highly dispersed Co-N-graphene for pollutant removal. RSC Adv 2022;12:17864-72. [PMID: 35765340 DOI: 10.1039/d2ra02491h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Lee Y, Kim HS, Kang YY, Kang HJ, Lee J, Kim J, Lee J, Lee S, Min S, Koh W, Kang Y, Kim H, Ka J. A Conceptual Study on Photodynamic Control‐Mediated Holographic Composites. Advanced Photonics Research. [DOI: 10.1002/adpr.202100363] [Reference Citation Analysis]
11 Luo T, Fan Y, Mao J, Yuan E, You E, Xu Z, Lin W. Dimensional Reduction Enhances Photodynamic Therapy of Metal-Organic Nanophotosensitizers. J Am Chem Soc 2022. [PMID: 35297640 DOI: 10.1021/jacs.2c00384] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
12 Shabbirahmed AM, Kumaravel M, Somu P, Paul S, Khadria A. Recent Advancements in Nanomaterials for Photodynamic Therapy of Cancers. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_211-2] [Reference Citation Analysis]
13 Shabbirahmed AM, Kumaravel M, Somu P, Paul S, Khadria A. Recent Advancements in Nanomaterials for Photodynamic Therapy of Cancers. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-1247-3_211-1] [Reference Citation Analysis]
14 Kafoumba B, Lamoussa O, Ouattara MP, Patrice OW, Fatogoma D, Nobel NK, Donatien EA, Nahossé Z. Theoretical Investigation of Ru(II) Complexes as Photosensitizer for Photodynamic Therapy. CMB 2022;12:109-121. [DOI: 10.4236/cmb.2022.122007] [Reference Citation Analysis]
15 Shabbirahmed AM, Kumaravel M, Somu P, Paul S, Khadria A. Recent Advancements in Nanomaterials for Photodynamic Therapy of Cancers. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects 2022. [DOI: 10.1007/978-981-16-5422-0_211] [Reference Citation Analysis]
16 Liu W, Ma X, Jin Y, Zhang J, Li Y, Tang Y, Song Y, Wang S. Chlorin e6-Biotin Conjugates for Tumor-Targeting Photodynamic Therapy. Molecules 2021;26:7342. [PMID: 34885922 DOI: 10.3390/molecules26237342] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Yao S, Zhao X, Wan X, Wang X, Huang T, Zhang J, Li L. π-π conjugation promoted nanocatalysis for cancer therapy based on a covalent organic framework. Mater Horiz 2021;8:3457-67. [PMID: 34755162 DOI: 10.1039/d1mh01273h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
18 Zhao X, Yao Q, Long S, Chi W, Yang Y, Tan D, Liu X, Huang H, Sun W, Du J, Fan J, Peng X. An Approach to Developing Cyanines with Simultaneous Intersystem Crossing Enhancement and Excited-State Lifetime Elongation for Photodynamic Antitumor Metastasis. J Am Chem Soc 2021;143:12345-54. [PMID: 34323480 DOI: 10.1021/jacs.1c06275] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 21.0] [Reference Citation Analysis]
19 Wang K, Xue SS, Liu X, Pan W, Li N, Tang B. Stimuli-activated molecular photothermal agents for cancer therapy. Chem Commun (Camb) 2021;57:6584-95. [PMID: 34137400 DOI: 10.1039/d1cc02116h] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
20 De Bonfils P, Verron E, Nun P, Coeffard V. Photoinduced Storage and Thermal Release of Singlet Oxygen from 1,2‐Dihydropyridine Endoperoxides. ChemPhotoChem 2021;5:847-56. [DOI: 10.1002/cptc.202100047] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Hou K, Liu J, Du J, Mi S, Ma S, Ba Y, Ji H, Li B, Hu S. Dihydroartemisinin prompts amplification of photodynamic therapy-induced reactive oxygen species to exhaust Na/H exchanger 1-mediated glioma cells invasion and migration. J Photochem Photobiol B 2021;219:112192. [PMID: 34000476 DOI: 10.1016/j.jphotobiol.2021.112192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Liu S, Feng G, Tang BZ, Liu B. Recent advances of AIE light-up probes for photodynamic therapy. Chem Sci 2021;12:6488-506. [PMID: 34040725 DOI: 10.1039/d1sc00045d] [Cited by in Crossref: 91] [Cited by in F6Publishing: 100] [Article Influence: 91.0] [Reference Citation Analysis]
23 Huang C, Liang C, Sadhukhan T, Banerjee S, Fan Z, Li T, Zhu Z, Zhang P, Raghavachari K, Huang H. In‐vitro and In‐vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angew Chem 2021;133:9560-5. [DOI: 10.1002/ange.202015671] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
24 Huang C, Liang C, Sadhukhan T, Banerjee S, Fan Z, Li T, Zhu Z, Zhang P, Raghavachari K, Huang H. In-vitro and In-vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angew Chem Int Ed Engl 2021;60:9474-9. [PMID: 33434379 DOI: 10.1002/anie.202015671] [Cited by in Crossref: 44] [Cited by in F6Publishing: 47] [Article Influence: 44.0] [Reference Citation Analysis]
25 Song M, Liu C, Chen S, Zhang W. Nanocarrier-Based Drug Delivery for Melanoma Therapeutics. Int J Mol Sci 2021;22:1873. [PMID: 33668591 DOI: 10.3390/ijms22041873] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 12.0] [Reference Citation Analysis]
26 Zhao X, Liu J, Fan J, Chao H, Peng X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chem Soc Rev 2021;50:4185-219. [PMID: 33527104 DOI: 10.1039/d0cs00173b] [Cited by in Crossref: 217] [Cited by in F6Publishing: 240] [Article Influence: 217.0] [Reference Citation Analysis]
27 Ouattara WP, Bamba K, Thomas AS, Diarrassouba F, Ouattara L, Ouattara MP, N'guessan KN, Kone MGR, Kodjo CG, Ziao N. Theoretical Studies of Photodynamic Therapy Properties of Azopyridine <i>δ</i>-OsCl<sub>2</sub>(Azpy)<sub>2</sub> Complex as a Photosensitizer by a TDDFT Method. CC 2021;09:64-84. [DOI: 10.4236/cc.2021.91004] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 Kafoumba B, Patrice OW, Fatogoma D, Ouattara L, Ouattara MP, N’guessan KN, Donatien EA, Nahossé Z. Theoretical Determination of Influence of the Metallic State of Oxidation toward Cytotoxic Activity: Case of Ruthenium Complexes. CC 2021;09:97-119. [DOI: 10.4236/cc.2021.92006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Kubheka G, Babu B, Prinsloo E, Kobayashi N, Mack J, Nyokong T. Photodynamic activity of 2,6-dibrominated dimethylaminophenylbuta-1,3-dienylBODIPY dyes. J Porphyrins Phthalocyanines 2021;25:47-55. [DOI: 10.1142/s1088424620500509] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Wang X, Lu Y, Zhang J, Zhang S, Chen T, Ou Q, Huang J. Highly Sensitive Artificial Visual Array Using Transistors Based on Porphyrins and Semiconductors. Small 2021;17:e2005491. [PMID: 33325607 DOI: 10.1002/smll.202005491] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 9.5] [Reference Citation Analysis]
31 Hu Y, Hou Y, Wang Z, Li Y, Zhao J. 3,5-Anthryl-Bodipy dyad/triad: Preparation, effect of F-B-F induced conformation restriction on the photophysical properties, and application in triplet-triplet-annihilation upconversion. J Chem Phys 2020;153:224304. [PMID: 33317285 DOI: 10.1063/5.0025224] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
32 Choi S. Activation Strategies in Image-Guided Nanotherapeutic Delivery. JNT 2020;1:78-104. [DOI: 10.3390/jnt1010007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Dai X, Dong X, Liu Z, Liu G, Liu Y. Controllable Singlet Oxygen Generation in Water Based on Cyclodextrin Secondary Assembly for Targeted Photodynamic Therapy. Biomacromolecules 2020;21:5369-79. [DOI: 10.1021/acs.biomac.0c01547] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]
34 Luo L, Li L, Cong C, He Y, Hao Z, Gao D. Catalase-like nanosystem for interlocking trimodal cancer therapy with hypoxia relief. Sci China Mater 2021;64:1021-34. [DOI: 10.1007/s40843-020-1492-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
35 Ming L, Cheng K, Chen Y, Yang R, Chen D. Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Med 2021;10:257-68. [PMID: 33141513 DOI: 10.1002/cam4.3592] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 16.0] [Reference Citation Analysis]
36 Chen J, Zhu Y, Kaskel S. Porphyrin-Based Metal-Organic Frameworks for Biomedical Applications. Angew Chem Int Ed Engl 2021;60:5010-35. [PMID: 31989749 DOI: 10.1002/anie.201909880] [Cited by in Crossref: 130] [Cited by in F6Publishing: 141] [Article Influence: 65.0] [Reference Citation Analysis]
37 Chen J, Zhu Y, Kaskel S. Porphyrin‐basierte Metall‐organische Gerüste für biomedizinische Anwendungen. Angew Chem 2021;133:5064-91. [DOI: 10.1002/ange.201909880] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
38 Tian J, Huang B, Nawaz MH, Zhang W. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coordination Chemistry Reviews 2020;420:213410. [DOI: 10.1016/j.ccr.2020.213410] [Cited by in Crossref: 93] [Cited by in F6Publishing: 71] [Article Influence: 46.5] [Reference Citation Analysis]
39 Cheng Y, Qin S, Liu W, Ma Y, Chen X, Zhang A, Zhang X. Dual‐Targeting Photosensitizer‐Peptide Amphiphile Conjugate for Enzyme‐Triggered Drug Delivery and Synergistic Chemo‐Photodynamic Tumor Therapy. Adv Mater Interfaces 2020;7:2000935. [DOI: 10.1002/admi.202000935] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
40 Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. Adv Therap 2020;3:2000117. [DOI: 10.1002/adtp.202000117] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
41 Linden G, Vázquez O. Bioorthogonal Turn-On BODIPY-Peptide Photosensitizers for Tailored Photodynamic Therapy. Chemistry 2020;26:10014-23. [PMID: 32638402 DOI: 10.1002/chem.202001718] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
42 Tian J, Xia L, Wu J, Huang B, Cao H, Zhang W. Linear Alternating Supramolecular Photosensitizer for Enhanced Photodynamic Therapy. ACS Appl Mater Interfaces 2020;12:32352-9. [PMID: 32584539 DOI: 10.1021/acsami.0c07333] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
43 Lima E, E Boto R, Ferreira D, R Fernandes J, Almeida P, F V Ferreira L, Souto EB, Silva AM, V Reis L. Quinoline‑ and Benzoselenazole-Derived Unsymmetrical Squaraine Cyanine Dyes: Design, Synthesis, Photophysicochemical Features and Light-Triggerable Antiproliferative Effects against Breast Cancer Cell Lines. Materials (Basel) 2020;13:E2646. [PMID: 32531981 DOI: 10.3390/ma13112646] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
44 Huang H, Huang D, Li M, Yao Q, Tian R, Long S, Fan J, Peng X. NIR aza-pentamethine dyes as photosensitizers for photodynamic therapy. Dyes and Pigments 2020;177:108284. [DOI: 10.1016/j.dyepig.2020.108284] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
45 Fernandes TCD, Lima E, Boto RE, Ferreira D, Fernandes JR, Almeida P, Ferreira LFV, Silva AM, Reis LV. In vitro phototherapeutic effects of indolenine-based mono- and dithiosquaraine cyanine dyes against Caco-2 and HepG2 human cancer cell lines. Photodiagnosis Photodyn Ther 2020;31:101844. [PMID: 32485406 DOI: 10.1016/j.pdpdt.2020.101844] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
46 Zhou X, Li H, Shi C, Xu F, Zhang Z, Yao Q, Ma H, Sun W, Shao K, Du J, Long S, Fan J, Wang J, Peng X. An APN-activated NIR photosensitizer for cancer photodynamic therapy and fluorescence imaging. Biomaterials 2020;253:120089. [PMID: 32447103 DOI: 10.1016/j.biomaterials.2020.120089] [Cited by in Crossref: 49] [Cited by in F6Publishing: 42] [Article Influence: 24.5] [Reference Citation Analysis]
47 Kang S, Gil YG, Min DH, Jang H. Nonrecurring Circuit Nanozymatic Enhancement of Hypoxic Pancreatic Cancer Phototherapy Using Speckled Ru-Te Hollow Nanorods. ACS Nano 2020;14:4383-94. [PMID: 32196307 DOI: 10.1021/acsnano.9b09974] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 13.5] [Reference Citation Analysis]
48 Xu W, Qi Y, Zhou K, Wang Z, Wang G, He G, Fang Y. A new spirofluorene-based nonplanar PBI-dyad and its utilization in the film-based photo-production of singlet oxygen. Sci China Chem 2020;63:526-33. [DOI: 10.1007/s11426-019-9676-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
49 Lima E, Ferreira O, Silva JF, Santos AO, Boto RE, Fernandes JR, Almeida P, Silvestre SM, Reis LV. Photodynamic activity of indolenine-based aminosquaraine cyanine dyes: Synthesis and in vitro photobiological evaluation. Dyes and Pigments 2020;174:108024. [DOI: 10.1016/j.dyepig.2019.108024] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
50 Wang Z, Ivanov M, Gao Y, Bussotti L, Foggi P, Zhang H, Russo N, Dick B, Zhao J, Di Donato M, Mazzone G, Luo L, Fedin M. Spin–Orbit Charge‐Transfer Intersystem Crossing (ISC) in Compact Electron Donor–Acceptor Dyads: ISC Mechanism and Application as Novel and Potent Photodynamic Therapy Reagents. Chem Eur J 2020;26:1091-102. [DOI: 10.1002/chem.201904306] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 25.5] [Reference Citation Analysis]
51 Tong X, Gan S, Wu J, Hu Y, Yuan A. A nano-photosensitizer based on covalent organic framework nanosheets with high loading and therapeutic efficacy. Nanoscale 2020;12:7376-82. [DOI: 10.1039/c9nr10787h] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
52 Yang Z, Xu W, Wang J, Liu L, Chu Y, Wang Y, Hu Y, Yi T, Hua J. Diketopyrrolopyrrole-based multifunctional ratiometric fluorescent probe and γ-glutamyltranspeptidase-triggered activatable photosensitizer for tumor therapy. J Mater Chem C 2020;8:8183-90. [DOI: 10.1039/d0tc01836h] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 9.0] [Reference Citation Analysis]
53 Feng G, Zhang G, Ding D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem Soc Rev 2020;49:8179-234. [DOI: 10.1039/d0cs00671h] [Cited by in Crossref: 190] [Cited by in F6Publishing: 203] [Article Influence: 95.0] [Reference Citation Analysis]
54 Zhang Y, Yang Z, Zheng X, Chen L, Xie Z. Highly efficient near-infrared BODIPY phototherapeutic nanoparticles for cancer treatment. J Mater Chem B 2020;8:5305-11. [DOI: 10.1039/d0tb00991a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
55 Fu Y, Wang L, Chi X, Alvarado-cesar F, An N, Song Y, Wu Y, Zhang P, Guo C. Body-clearable chromium nitride for synergetic photothermal and photodynamic treatment. New J Chem 2020;44:20039-46. [DOI: 10.1039/d0nj03943h] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
56 Zhao X, Long S, Li M, Cao J, Li Y, Guo L, Sun W, Du J, Fan J, Peng X. Oxygen-Dependent Regulation of Excited-State Deactivation Process of Rational Photosensitizer for Smart Phototherapy. J Am Chem Soc 2020;142:1510-7. [DOI: 10.1021/jacs.9b11800] [Cited by in Crossref: 102] [Cited by in F6Publishing: 108] [Article Influence: 34.0] [Reference Citation Analysis]
57 Pan M, Jiang Q, Sun J, Xu Z, Zhou Y, Zhang L, Liu X. Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2020;59:1897-905. [PMID: 31696593 DOI: 10.1002/anie.201912574] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 20.7] [Reference Citation Analysis]
58 Pan M, Jiang Q, Sun J, Xu Z, Zhou Y, Zhang L, Liu X. Programming DNA Nanoassembly for Enhanced Photodynamic Therapy. Angew Chem 2019;132:1913-21. [DOI: 10.1002/ange.201912574] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
59 Huang B, Tian J, Jiang D, Gao Y, Zhang W. NIR-Activated “OFF/ON” Photodynamic Therapy by a Hybrid Nanoplatform with Upper Critical Solution Temperature Block Copolymers and Gold Nanorods. Biomacromolecules 2019;20:3873-83. [DOI: 10.1021/acs.biomac.9b00963] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 9.7] [Reference Citation Analysis]
60 Linden G, Zhang L, Pieck F, Linne U, Kosenkov D, Tonner R, Vázquez O. Gezielte Singulett‐Sauerstofferzeugung durch bioorthogonale DNA‐basierte Tetrazin‐Ligation. Angew Chem 2019;131:13000-5. [DOI: 10.1002/ange.201907093] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
61 Linden G, Zhang L, Pieck F, Linne U, Kosenkov D, Tonner R, Vázquez O. Conditional Singlet Oxygen Generation through a Bioorthogonal DNA-targeted Tetrazine Reaction. Angew Chem Int Ed Engl 2019;58:12868-73. [PMID: 31291504 DOI: 10.1002/anie.201907093] [Cited by in Crossref: 39] [Cited by in F6Publishing: 39] [Article Influence: 13.0] [Reference Citation Analysis]
62 Cheng H, Cui Y, Wang R, Kwon N, Yoon J. The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy. Coordination Chemistry Reviews 2019;392:237-54. [DOI: 10.1016/j.ccr.2019.04.004] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 13.7] [Reference Citation Analysis]
63 Lan M, Zhao S, Liu W, Lee CS, Zhang W, Wang P. Photosensitizers for Photodynamic Therapy. Adv Healthc Mater 2019;8:e1900132. [PMID: 31067008 DOI: 10.1002/adhm.201900132] [Cited by in Crossref: 349] [Cited by in F6Publishing: 366] [Article Influence: 116.3] [Reference Citation Analysis]
64 Guo H, Dang C, Zhao J, Dick B. Lighting the Flavin Decorated Ruthenium(II) Polyimine Complexes: A Theoretical Investigation. Inorg Chem 2019;58:8486-93. [PMID: 31185537 DOI: 10.1021/acs.inorgchem.9b00713] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
65 Zeng J, Wang X, Qi Y, Yu Y, Zeng X, Zhang X. Structural Transformation in Metal–Organic Frameworks for Reversible Binding of Oxygen. Angew Chem 2019;131:5748-52. [DOI: 10.1002/ange.201902810] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
66 Zeng JY, Wang XS, Qi YD, Yu Y, Zeng X, Zhang XZ. Structural Transformation in Metal-Organic Frameworks for Reversible Binding of Oxygen. Angew Chem Int Ed Engl 2019;58:5692-6. [PMID: 30848514 DOI: 10.1002/anie.201902810] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 10.7] [Reference Citation Analysis]
67 Sun W, Zhao X, Fan J, Du J, Peng X. Boron Dipyrromethene Nano‐Photosensitizers for Anticancer Phototherapies. Small 2019;15:1804927. [DOI: 10.1002/smll.201804927] [Cited by in Crossref: 97] [Cited by in F6Publishing: 102] [Article Influence: 32.3] [Reference Citation Analysis]
68 Zhou B, Guo Z, Lin Z, Zhang L, Jiang B, Shen X. Recent insights into near-infrared light-responsive carbon dots for bioimaging and cancer phototherapy. Inorg Chem Front 2019;6:1116-28. [DOI: 10.1039/c9qi00201d] [Cited by in Crossref: 52] [Cited by in F6Publishing: 54] [Article Influence: 17.3] [Reference Citation Analysis]
69 Li C, Lin W, Liu S, Zhang W, Xie Z. Self-destructive PEG–BODIPY nanomaterials for photodynamic and photothermal therapy. J Mater Chem B 2019;7:4655-60. [DOI: 10.1039/c9tb00752k] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
70 Wong RC, Lo P, Ng DK. Stimuli responsive phthalocyanine-based fluorescent probes and photosensitizers. Coordination Chemistry Reviews 2019;379:30-46. [DOI: 10.1016/j.ccr.2017.10.006] [Cited by in Crossref: 117] [Cited by in F6Publishing: 89] [Article Influence: 39.0] [Reference Citation Analysis]
71 Cheng H, Fan G, Fan J, Zhao L, Zheng R, Yu X, Li S. Ratiometric theranostic nanoprobe for pH imaging-guided photodynamic therapy. Nanoscale 2019;11:9008-14. [DOI: 10.1039/c9nr00093c] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
72 Yang M, Wang H, Wang Z, Han Z, Gu Y. A Nd 3+ sensitized upconversion nanosystem with dual photosensitizers for improving photodynamic therapy efficacy. Biomater Sci 2019;7:1686-95. [DOI: 10.1039/c8bm01570h] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
73 Wang ZW, Su D, Li XQ, Cao JJ, Yang DC, Liu JY. A H₂O₂-Responsive Boron Dipyrromethene-Based Photosensitizer for Imaging-Guided Photodynamic Therapy. Molecules 2018;24:E32. [PMID: 30577688 DOI: 10.3390/molecules24010032] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
74 Wang Z, Gao Y, Hussain M, Kundu S, Rane V, Hayvali M, Yildiz EA, Zhao J, Yaglioglu HG, Das R, Luo L, Li J. Efficient Radical-Enhanced Intersystem Crossing in an NDI-TEMPO Dyad: Photophysics, Electron Spin Polarization, and Application in Photodynamic Therapy. Chemistry 2018;24:18663-75. [PMID: 30325074 DOI: 10.1002/chem.201804212] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 12.8] [Reference Citation Analysis]
75 Li T, Yan L. Functional Polymer Nanocarriers for Photodynamic Therapy. Pharmaceuticals (Basel) 2018;11:E133. [PMID: 30513613 DOI: 10.3390/ph11040133] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
76 Liu S, Zhang H, Li Y, Liu J, Du L, Chen M, Kwok RTK, Lam JWY, Phillips DL, Tang BZ. Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angew Chem Int Ed 2018;57:15189-93. [DOI: 10.1002/anie.201810326] [Cited by in Crossref: 140] [Cited by in F6Publishing: 143] [Article Influence: 35.0] [Reference Citation Analysis]
77 Liu S, Zhang H, Li Y, Liu J, Du L, Chen M, Kwok RTK, Lam JWY, Phillips DL, Tang BZ. Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angew Chem 2018;130:15409-13. [DOI: 10.1002/ange.201810326] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 7.8] [Reference Citation Analysis]
78 Guan Q, Li Y, Li W, Dong Y. Photodynamic Therapy Based on Nanoscale Metal-Organic Frameworks: From Material Design to Cancer Nanotherapeutics. Chem Asian J 2018;13:3122-49. [DOI: 10.1002/asia.201801221] [Cited by in Crossref: 53] [Cited by in F6Publishing: 55] [Article Influence: 13.3] [Reference Citation Analysis]
79 Wu W, Mao D, Xu S, Kenry, Hu F, Li X, Kong D, Liu B. Polymerization-Enhanced Photosensitization. Chem 2018;4:1937-51. [DOI: 10.1016/j.chempr.2018.06.003] [Cited by in Crossref: 155] [Cited by in F6Publishing: 159] [Article Influence: 38.8] [Reference Citation Analysis]
80 Pibiri I, Buscemi S, Palumbo piccionello A, Pace A. Photochemically Produced Singlet Oxygen: Applications and Perspectives. ChemPhotoChem 2018;2:535-47. [DOI: 10.1002/cptc.201800076] [Cited by in Crossref: 59] [Cited by in F6Publishing: 60] [Article Influence: 14.8] [Reference Citation Analysis]
81 Wu W, Han C, Zhang Q, Zhang Q, Li Z, Gosztola DJ, Wiederrecht GP, Wu M. Functionalizing carbon nitride with heavy atom-free spin converters for enhanced 1O2 generation. Journal of Catalysis 2018;361:222-9. [DOI: 10.1016/j.jcat.2018.03.006] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
82 Guo X, Li X, Liu XC, Li P, Yao Z, Li J, Zhang W, Zhang JP, Xue D, Cao R. Selective visible-light-driven oxygen reduction to hydrogen peroxide using BODIPY photosensitizers. Chem Commun (Camb) 2018;54:845-8. [PMID: 29318236 DOI: 10.1039/c7cc09383g] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
83 Charron DM, Zheng G. Nanomedicine development guided by FRET imaging. Nano Today 2018;18:124-36. [DOI: 10.1016/j.nantod.2017.12.006] [Cited by in Crossref: 40] [Cited by in F6Publishing: 41] [Article Influence: 10.0] [Reference Citation Analysis]
84 Zhu M, Su C, Xing P, Zhou Y, Gong L, Zhang J, Du H, Bian Y, Jiang J. An AceDAN–porphyrin(Zn) dyad for fluorescence imaging and photodynamic therapy via two-photon excited FRET. Inorg Chem Front 2018;5:3061-6. [DOI: 10.1039/c8qi00705e] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
85 Guo H, Zhu L, Dang C, Zhao J, Dick B. Synthesis and photophysical properties of ruthenium( ii ) polyimine complexes decorated with flavin. Phys Chem Chem Phys 2018;20:17504-16. [DOI: 10.1039/c8cp02358a] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
86 Liu S, Wang D, Zhong A, Wen H. One-step rapid synthesis of π-conjugated large oligomers via C–H activation coupling. Org Chem Front 2018;5:653-61. [DOI: 10.1039/c7qo00960g] [Cited by in Crossref: 29] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
87 Wu W, Shao X, Zhao J, Wu M. Controllable Photodynamic Therapy Implemented by Regulating Singlet Oxygen Efficiency. Adv Sci (Weinh) 2017;4:1700113. [PMID: 28725533 DOI: 10.1002/advs.201700113] [Cited by in Crossref: 86] [Cited by in F6Publishing: 90] [Article Influence: 17.2] [Reference Citation Analysis]