BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cui H, Zhu W, Holmes B, Zhang LG. Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration. Adv Sci (Weinh) 2016;3:1600058. [PMID: 27818910 DOI: 10.1002/advs.201600058] [Cited by in Crossref: 83] [Cited by in F6Publishing: 78] [Article Influence: 13.8] [Reference Citation Analysis]
Number Citing Articles
1 Daghrery A, Bottino MC. Advanced biomaterials for periodontal tissue regeneration. Genesis. [DOI: 10.1002/dvg.23501] [Reference Citation Analysis]
2 Zhang Y, Jo JI, Chen L, Hontsu S, Hashimoto Y. Effect of Hydroxyapatite Coating by Er: YAG Pulsed Laser Deposition on the Bone Formation Efficacy by Polycaprolactone Porous Scaffold. Int J Mol Sci 2022;23:9048. [PMID: 36012313 DOI: 10.3390/ijms23169048] [Reference Citation Analysis]
3 Gu P, Xu Y, Liu Q, Wang Y, Li Z, Chen M, Mao R, Liang J, Zhang X, Fan Y, Sun Y. Tailorable 3DP Flexible Scaffolds with Porosification of Filaments Facilitate Cell Ingrowth and Biomineralized Deposition. ACS Appl Mater Interfaces 2022. [PMID: 35829709 DOI: 10.1021/acsami.2c07649] [Reference Citation Analysis]
4 Tan G, Xu J, Yu Q, Zhang J, Hu X, Sun C, Zhang H. Photo-Crosslinkable Hydrogels for 3D Bioprinting in the Repair of Osteochondral Defects: A Review of Present Applications and Future Perspectives. Micromachines 2022;13:1038. [DOI: 10.3390/mi13071038] [Reference Citation Analysis]
5 Joshi A, Choudhury S, Gugulothu SB, Visweswariah SS, Chatterjee K. Strategies to Promote Vascularization in 3D Printed Tissue Scaffolds: Trends and Challenges. Biomacromolecules 2022. [PMID: 35696326 DOI: 10.1021/acs.biomac.2c00423] [Reference Citation Analysis]
6 Chen Y, Sun W, Tang H, Li Y, Li C, Wang L, Chen J, Lin W, Li S, Fan Z, Cheng Y, Chen C. Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Front Bioeng Biotechnol 2022;10:820940. [DOI: 10.3389/fbioe.2022.820940] [Reference Citation Analysis]
7 Ha Y, Ma X, Li S, Li T, Li Z, Qian Y, Shafiq M, Wang J, Zhou X, He C. Bone Microenvironment‐Mimetic Scaffolds with Hierarchical Microstructure for Enhanced Vascularization and Bone Regeneration. Adv Funct Materials 2022;32:2200011. [DOI: 10.1002/adfm.202200011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
8 Luo Y, Zhang T, Lin X. 3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization. Chemical Engineering Journal 2022;430:132926. [DOI: 10.1016/j.cej.2021.132926] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
9 Santoni S, Gugliandolo SG, Sponchioni M, Moscatelli D, Colosimo BM. 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Bio-des Manuf . [DOI: 10.1007/s42242-021-00165-0] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
10 Wang Z, Yang W, Qin Y, Liang W, Yu H, Liu L. Digital micro-mirror device -based light curing technology and its biological applications. Optics & Laser Technology 2021;143:107344. [DOI: 10.1016/j.optlastec.2021.107344] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Elalouf A. Immune response against the biomaterials used in 3D bioprinting of organs. Transpl Immunol 2021;:101446. [PMID: 34389430 DOI: 10.1016/j.trim.2021.101446] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
12 Aytac Z, Dubey N, Daghrery A, Ferreira JA, de Souza Araújo IJ, Castilho M, Malda J, Bottino MC. Innovations in craniofacial bone and periodontal tissue engineering – from electrospinning to converged biofabrication. International Materials Reviews. [DOI: 10.1080/09506608.2021.1946236] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Brazhkina O, Davis ME. 3D bioprinting in cardiovascular nanomedicine. Nanomedicine (Lond) 2021;16:1347-50. [PMID: 34080438 DOI: 10.2217/nnm-2021-0083] [Reference Citation Analysis]
14 Cao X, Maharjan S, Ashfaq R, Shin J, Zhang YS. Bioprinting of Small-Diameter Blood Vessels. Engineering 2021;7:832-44. [DOI: 10.1016/j.eng.2020.03.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
15 Kang D, Park JA, Kim W, Kim S, Lee HR, Kim WJ, Yoo JY, Jung S. All-Inkjet-Printed 3D Alveolar Barrier Model with Physiologically Relevant Microarchitecture. Adv Sci (Weinh) 2021;8:2004990. [PMID: 34026463 DOI: 10.1002/advs.202004990] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 15.0] [Reference Citation Analysis]
16 Lopes SV, Collins MN, Reis RL, Oliveira JM, Silva-correia J. Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS Appl Bio Mater 2021;4:2941-56. [DOI: 10.1021/acsabm.1c00051] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
17 Wang D, Xu Y, Li Q, Turng LS. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 2020;8:1801-22. [PMID: 32048689 DOI: 10.1039/c9tb01849b] [Cited by in Crossref: 19] [Cited by in F6Publishing: 32] [Article Influence: 19.0] [Reference Citation Analysis]
18 Lee J, Parthiban P, Jin G, Knowles JC, Kim H. Materials roles for promoting angiogenesis in tissue regeneration. Progress in Materials Science 2021;117:100732. [DOI: 10.1016/j.pmatsci.2020.100732] [Cited by in Crossref: 14] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
19 Park YL, Park K, Cha JM. 3D-Bioprinting Strategies Based on In Situ Bone-Healing Mechanism for Vascularized Bone Tissue Engineering. Micromachines (Basel) 2021;12:287. [PMID: 33800485 DOI: 10.3390/mi12030287] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
20 Pagac M, Hajnys J, Ma QP, Jancar L, Jansa J, Stefek P, Mesicek J. A Review of Vat Photopolymerization Technology: Materials, Applications, Challenges, and Future Trends of 3D Printing. Polymers (Basel) 2021;13:598. [PMID: 33671195 DOI: 10.3390/polym13040598] [Cited by in Crossref: 14] [Cited by in F6Publishing: 49] [Article Influence: 14.0] [Reference Citation Analysis]
21 Zhou Y, Sooriyaarachchi D, Liu D, Tan GZ. Biomimetic strategies for fabricating musculoskeletal tissue scaffolds: a review. Int J Adv Manuf Technol 2021;112:1211-29. [DOI: 10.1007/s00170-020-06538-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Chen J, Hendriks M, Chatzis A, Ramasamy SK, Kusumbe AP. Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. J Bone Miner Res 2020;35:2103-20. [PMID: 32845550 DOI: 10.1002/jbmr.4171] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 15.5] [Reference Citation Analysis]
23 Yang Y, Zhang Q, Xu T, Zhang H, Zhang M, Lu L, Hao Y, Fuh JH, Zhao X. Photocrosslinkable nanocomposite ink for printing strong, biodegradable and bioactive bone graft. Biomaterials 2020;263:120378. [PMID: 32932140 DOI: 10.1016/j.biomaterials.2020.120378] [Cited by in Crossref: 12] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
24 Hajzamani D, Shokrollahi P, Najmoddin N, Shokrolahi F. Effect of engineered PLGA‐gelatin‐chitosan/ PLGA‐gelatin / PLGA‐gelatin‐graphene three‐layer scaffold on adhesion/proliferation of HUVECs. Polym Adv Technol 2020;31:1896-910. [DOI: 10.1002/pat.4915] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
25 Liu Y, Zhu Z, Pei X, Zhang X, Cheng X, Hu S, Gao X, Wang J, Chen J, Wan Q. ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration. ACS Appl Mater Interfaces 2020;12:36978-95. [PMID: 32814397 DOI: 10.1021/acsami.0c12090] [Cited by in Crossref: 37] [Cited by in F6Publishing: 32] [Article Influence: 18.5] [Reference Citation Analysis]
26 Cui H, Esworthy T, Zhou X, Hann SY, Glazer RI, Li R, Zhang LG. Engineering a Novel 3D Printed Vascularized Tissue Model for Investigating Breast Cancer Metastasis to Bone. Adv Healthc Mater 2020;9:e1900924. [PMID: 31846231 DOI: 10.1002/adhm.201900924] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 10.5] [Reference Citation Analysis]
27 Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater 2020;5:584-603. [DOI: 10.1038/s41578-020-0204-2] [Cited by in Crossref: 127] [Cited by in F6Publishing: 220] [Article Influence: 63.5] [Reference Citation Analysis]
28 Xing F, Xiang Z, Rommens PM, Ritz U. 3D Bioprinting for Vascularized Tissue-Engineered Bone Fabrication. Materials (Basel) 2020;13:E2278. [PMID: 32429135 DOI: 10.3390/ma13102278] [Cited by in Crossref: 18] [Cited by in F6Publishing: 25] [Article Influence: 9.0] [Reference Citation Analysis]
29 Li T, Chang J, Zhu Y, Wu C. 3D Printing of Bioinspired Biomaterials for Tissue Regeneration. Adv Healthc Mater 2020;:e2000208. [PMID: 32338464 DOI: 10.1002/adhm.202000208] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
30 Yang X, Chen S, Liu X, Yu M, Liu X. Drug Delivery Based on Nanotechnology for Target Bone Disease. Curr Drug Deliv 2019;16:782-92. [PMID: 31530265 DOI: 10.2174/1567201816666190917123948] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Nie J, Gao Q, Fu J, He Y. Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review. Adv Healthc Mater 2020;9:e1901773. [PMID: 32125787 DOI: 10.1002/adhm.201901773] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 17.0] [Reference Citation Analysis]
32 Zha Y, Lin T, Li Y, Zhang X, Wang Z, Li Z, Ye Y, Wang B, Zhang S, Wang J. Exosome-mimetics as an engineered gene-activated matrix induces in-situ vascularized osteogenesis. Biomaterials 2020;247:119985. [PMID: 32272301 DOI: 10.1016/j.biomaterials.2020.119985] [Cited by in Crossref: 16] [Cited by in F6Publishing: 26] [Article Influence: 8.0] [Reference Citation Analysis]
33 Leucht A, Volz A, Rogal J, Borchers K, Kluger PJ. Advanced gelatin-based vascularization bioinks for extrusion-based bioprinting of vascularized bone equivalents. Sci Rep 2020;10. [DOI: 10.1038/s41598-020-62166-w] [Cited by in Crossref: 17] [Cited by in F6Publishing: 38] [Article Influence: 8.5] [Reference Citation Analysis]
34 Hadisi Z, Walsh T, Hossein Dabiri SM, Seyfoori A, Godeau B, Charest G, Fortin D, Akbari M. 3D printing for the future of medicine. Journal of 3D printing in medicine 2020;4:45-67. [DOI: 10.2217/3dp-2019-0010] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
35 Argentati C, Tortorella I, Bazzucchi M, Morena F, Martino S. Harnessing the Potential of Stem Cells for Disease Modeling: Progress and Promises. J Pers Med. 2020;10. [PMID: 32041088 DOI: 10.3390/jpm10010008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
36 Minto J, Zhou X, Osborn J, Zhang LG, Sarkar K, Rao RD. Three-Dimensional Printing: A Catalyst for a Changing Orthopaedic Landscape. JBJS Rev 2020;8:e0076-e0076. [DOI: 10.2106/jbjs.rvw.19.00076] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
37 Choi WJ, Hwang KS, Kwon HJ, Lee C, Kim CH, Kim TH, Heo SW, Kim JH, Lee JY. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application. Mater Sci Eng C Mater Biol Appl 2020;110:110693. [PMID: 32204007 DOI: 10.1016/j.msec.2020.110693] [Cited by in Crossref: 22] [Cited by in F6Publishing: 37] [Article Influence: 11.0] [Reference Citation Analysis]
38 Jiang P, Ji Z, Wang X, Zhou F. Surface functionalization – a new functional dimension added to 3D printing. J Mater Chem C 2020;8:12380-411. [DOI: 10.1039/d0tc02850a] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
39 Kumar S, Singh R, Batish A, Singh T. Additive manufacturing of smart materials exhibiting 4-D properties: A state of art review. Journal of Thermoplastic Composite Materials. [DOI: 10.1177/0892705719895052] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
40 Stevenson M, Long J, Guerrero P, Caba KDL, Seyfoddin A, Etxabide A. Development and characterization of ribose-crosslinked gelatin products prepared by indirect 3D printing. Food Hydrocolloids 2019;96:65-71. [DOI: 10.1016/j.foodhyd.2019.05.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
41 Wang D, Wang X, Li X, Jiang L, Chang Z, Li Q. Biologically responsive, long-term release nanocoating on an electrospun scaffold for vascular endothelialization and anticoagulation. Mater Sci Eng C Mater Biol Appl 2020;107:110212. [PMID: 31761208 DOI: 10.1016/j.msec.2019.110212] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
42 Cui H, Zhu W, Huang Y, Liu C, Yu ZX, Nowicki M, Miao S, Cheng Y, Zhou X, Lee SJ, Zhou Y, Wang S, Mohiuddin M, Horvath K, Zhang LG. In vitro and in vivo evaluation of 3D bioprinted small-diameter vasculature with smooth muscle and endothelium. Biofabrication. 2019;12:015004. [PMID: 31470437 DOI: 10.1088/1758-5090/ab402c] [Cited by in Crossref: 35] [Cited by in F6Publishing: 44] [Article Influence: 11.7] [Reference Citation Analysis]
43 Yi N, Cui H, Zhang LG, Cheng H. Integration of biological systems with electronic-mechanical assemblies. Acta Biomater 2019;95:91-111. [PMID: 31004844 DOI: 10.1016/j.actbio.2019.04.032] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 6.0] [Reference Citation Analysis]
44 Leberfinger AN, Dinda S, Wu Y, Koduru SV, Ozbolat V, Ravnic DJ, Ozbolat IT. Bioprinting functional tissues. Acta Biomater 2019;95:32-49. [PMID: 30639351 DOI: 10.1016/j.actbio.2019.01.009] [Cited by in Crossref: 64] [Cited by in F6Publishing: 59] [Article Influence: 21.3] [Reference Citation Analysis]
45 Wang D, Wang X, Zhang Z, Wang L, Li X, Xu Y, Ren C, Li Q, Turng LS. Programmed Release of Multimodal, Cross-Linked Vascular Endothelial Growth Factor and Heparin Layers on Electrospun Polycaprolactone Vascular Grafts. ACS Appl Mater Interfaces 2019;11:32533-42. [PMID: 31393107 DOI: 10.1021/acsami.9b10621] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 6.7] [Reference Citation Analysis]
46 Lyu Y, Xiao Q, Yin L, Yang L, He W. Potent delivery of an MMP inhibitor to the tumor microenvironment with thermosensitive liposomes for the suppression of metastasis and angiogenesis. Signal Transduct Target Ther 2019;4:26. [PMID: 31637006 DOI: 10.1038/s41392-019-0054-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 29] [Article Influence: 7.0] [Reference Citation Analysis]
47 Kjar A, Huang Y. Application of Micro-Scale 3D Printing in Pharmaceutics. Pharmaceutics 2019;11:E390. [PMID: 31382565 DOI: 10.3390/pharmaceutics11080390] [Cited by in Crossref: 22] [Cited by in F6Publishing: 31] [Article Influence: 7.3] [Reference Citation Analysis]
48 Sakthivel K, O'brien A, Kim K, Hoorfar M. Microfluidic analysis of heterotypic cellular interactions: A review of techniques and applications. TrAC Trends in Analytical Chemistry 2019;117:166-85. [DOI: 10.1016/j.trac.2019.03.026] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
49 Lin S, Yang G, Jiang F, Zhou M, Yin S, Tang Y, Tang T, Zhang Z, Zhang W, Jiang X. A Magnesium-Enriched 3D Culture System that Mimics the Bone Development Microenvironment for Vascularized Bone Regeneration. Adv Sci (Weinh) 2019;6:1900209. [PMID: 31380166 DOI: 10.1002/advs.201900209] [Cited by in Crossref: 55] [Cited by in F6Publishing: 61] [Article Influence: 18.3] [Reference Citation Analysis]
50 Cui H, Miao S, Esworthy T, Lee SJ, Zhou X, Hann SY, Webster TJ, Harris BT, Zhang LG. A novel near-infrared light responsive 4D printed nanoarchitecture with dynamically and remotely controllable transformation. Nano Res 2019;12:1381-8. [PMID: 33312444 DOI: 10.1007/s12274-019-2340-9] [Cited by in Crossref: 28] [Cited by in F6Publishing: 36] [Article Influence: 9.3] [Reference Citation Analysis]
51 Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio 2019;1:100008. [PMID: 32159140 DOI: 10.1016/j.mtbio.2019.100008] [Cited by in Crossref: 126] [Cited by in F6Publishing: 169] [Article Influence: 42.0] [Reference Citation Analysis]
52 Yin S, Zhang W, Zhang Z, Jiang X. Recent Advances in Scaffold Design and Material for Vascularized Tissue-Engineered Bone Regeneration. Adv Healthc Mater 2019;8:e1801433. [PMID: 30938094 DOI: 10.1002/adhm.201801433] [Cited by in Crossref: 65] [Cited by in F6Publishing: 74] [Article Influence: 21.7] [Reference Citation Analysis]
53 Hann SY, Cui H, Esworthy T, Miao S, Zhou X, Lee SJ, Fisher JP, Zhang LG. Recent advances in 3D printing: vascular network for tissue and organ regeneration. Transl Res 2019;211:46-63. [PMID: 31004563 DOI: 10.1016/j.trsl.2019.04.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 44] [Article Influence: 11.0] [Reference Citation Analysis]
54 Ashammakhi N, Hasan A, Kaarela O, Byambaa B, Sheikhi A, Gaharwar AK, Khademhosseini A. Advancing Frontiers in Bone Bioprinting. Adv Healthc Mater 2019;8:e1801048. [PMID: 30734530 DOI: 10.1002/adhm.201801048] [Cited by in Crossref: 89] [Cited by in F6Publishing: 85] [Article Influence: 29.7] [Reference Citation Analysis]
55 Deng C, Zhang Q, Jia M, Zhao J, Sun X, Gong T, Zhang Z. Tumors and Their Microenvironment Dual-Targeting Chemotherapy with Local Immune Adjuvant Therapy for Effective Antitumor Immunity against Breast Cancer. Adv Sci (Weinh) 2019;6:1801868. [PMID: 30937266 DOI: 10.1002/advs.201801868] [Cited by in Crossref: 66] [Cited by in F6Publishing: 64] [Article Influence: 22.0] [Reference Citation Analysis]
56 Ke D, Murphy SV. Current Challenges of Bioprinted Tissues Toward Clinical Translation. Tissue Eng Part B Rev 2019;25:1-13. [PMID: 30129878 DOI: 10.1089/ten.TEB.2018.0132] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
57 Yang E, Miao S, Zhong J, Zhang Z, Mills DK, Zhang LG. Bio-Based Polymers for 3D Printing of Bioscaffolds. Polym Rev (Phila Pa) 2018;58:668-87. [PMID: 30911289 DOI: 10.1080/15583724.2018.1484761] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 7.8] [Reference Citation Analysis]
58 Ionov L. 4D Biofabrication: Materials, Methods, and Applications. Adv Healthc Mater 2018;7:e1800412. [PMID: 29978564 DOI: 10.1002/adhm.201800412] [Cited by in Crossref: 48] [Cited by in F6Publishing: 44] [Article Influence: 12.0] [Reference Citation Analysis]
59 Steffens D, Braghirolli DI, Maurmann N, Pranke P. Update on the main use of biomaterials and techniques associated with tissue engineering. Drug Discovery Today 2018;23:1474-88. [DOI: 10.1016/j.drudis.2018.03.013] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
60 Heo DN, Castro NJ, Lee SJ, Noh H, Zhu W, Zhang LG. Enhanced bone tissue regeneration using a 3D printed microstructure incorporated with a hybrid nano hydrogel. Nanoscale 2017;9:5055-62. [PMID: 28211933 DOI: 10.1039/c6nr09652b] [Cited by in Crossref: 68] [Cited by in F6Publishing: 76] [Article Influence: 17.0] [Reference Citation Analysis]
61 Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, Gou M, Chen S. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv Drug Deliv Rev 2018;132:235-51. [PMID: 29935988 DOI: 10.1016/j.addr.2018.06.011] [Cited by in Crossref: 188] [Cited by in F6Publishing: 166] [Article Influence: 47.0] [Reference Citation Analysis]
62 Cui H, Miao S, Esworthy T, Zhou X, Lee SJ, Liu C, Yu ZX, Fisher JP, Mohiuddin M, Zhang LG. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev 2018;132:252-69. [PMID: 30053441 DOI: 10.1016/j.addr.2018.07.014] [Cited by in Crossref: 77] [Cited by in F6Publishing: 70] [Article Influence: 19.3] [Reference Citation Analysis]
63 Wu R, Xu X, Wang J, He X, Sun H, Chen F. Biomaterials for endogenous regenerative medicine: Coaxing stem cell homing and beyond. Applied Materials Today 2018;11:144-65. [DOI: 10.1016/j.apmt.2018.02.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 8.0] [Reference Citation Analysis]
64 Nishat T, De la Vega L, Anil Kumar S, Abelseth L, Alonzo M, Amereh M, Joddar B, Willerth SM. 3D Bioprinting Stem Cell Derived Tissues. Cell Mol Bioeng. 2018;11:219-240. [PMID: 31719887 DOI: 10.1007/s12195-018-0530-2] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
65 Zhai X, Ruan C, Ma Y, Cheng D, Wu M, Liu W, Zhao X, Pan H, Lu WW. 3D-Bioprinted Osteoblast-Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo. Adv Sci (Weinh) 2018;5:1700550. [PMID: 29593958 DOI: 10.1002/advs.201700550] [Cited by in Crossref: 94] [Cited by in F6Publishing: 88] [Article Influence: 23.5] [Reference Citation Analysis]
66 Li Y, Wan S, Liu G, Cai W, Huo D, Li G, Yang M, Wang Y, Guan G, Ding N, Liu F, Zeng W, Zhu C. Netrin-1 Promotes Inflammation Resolution to Achieve Endothelialization of Small-Diameter Tissue Engineering Blood Vessels by Improving Endothelial Progenitor Cells Function In Situ. Adv Sci (Weinh) 2017;4:1700278. [PMID: 29270340 DOI: 10.1002/advs.201700278] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
67 Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D Biofabrication Using Shape-Morphing Hydrogels. Adv Mater 2017;29. [PMID: 29024044 DOI: 10.1002/adma.201703443] [Cited by in Crossref: 201] [Cited by in F6Publishing: 187] [Article Influence: 40.2] [Reference Citation Analysis]
68 Rocha LA, Learmonth DA, Sousa RA, Salgado AJ. αvβ3 and α5β1 integrin-specific ligands: From tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine? Biotechnol Adv 2018;36:208-27. [PMID: 29155160 DOI: 10.1016/j.biotechadv.2017.11.004] [Cited by in Crossref: 28] [Cited by in F6Publishing: 34] [Article Influence: 5.6] [Reference Citation Analysis]
69 Hao X, Li Q, Guo J, Ren X, Feng Y, Shi C, Zhang W. Multifunctional Gene Carriers with Enhanced Specific Penetration and Nucleus Accumulation to Promote Neovascularization of HUVECs in Vivo. ACS Appl Mater Interfaces 2017;9:35613-27. [DOI: 10.1021/acsami.7b11615] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 6.8] [Reference Citation Analysis]
70 Wang Q, Zhang Y, Li B, Chen L. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. J Mater Chem B 2017;5:6963-72. [PMID: 32264345 DOI: 10.1039/c7tb00949f] [Cited by in Crossref: 36] [Cited by in F6Publishing: 45] [Article Influence: 7.2] [Reference Citation Analysis]
71 Nowicki M, Castro NJ, Rao R, Plesniak M, Zhang LG. Integrating three-dimensional printing and nanotechnology for musculoskeletal regeneration. Nanotechnology 2017;28:382001. [PMID: 28762957 DOI: 10.1088/1361-6528/aa8351] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
72 Miao S, Castro N, Nowicki M, Xia L, Cui H, Zhou X, Zhu W, Lee SJ, Sarkar K, Vozzi G, Tabata Y, Fisher J, Zhang LG. 4D printing of polymeric materials for tissue and organ regeneration. Mater Today (Kidlington) 2017;20:577-91. [PMID: 29403328 DOI: 10.1016/j.mattod.2017.06.005] [Cited by in Crossref: 148] [Cited by in F6Publishing: 164] [Article Influence: 29.6] [Reference Citation Analysis]
73 Patuzzo S, Goracci G, Gasperini L, Ciliberti R. 3D Bioprinting Technology: Scientific Aspects and Ethical Issues. Sci Eng Ethics 2018;24:335-48. [PMID: 28660387 DOI: 10.1007/s11948-017-9918-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
74 Gomes ME, Rodrigues MT, Domingues RM, Reis RL. Tissue Engineering and Regenerative Medicine: New Trends and Directions—A Year in Review. Tissue Engineering Part B: Reviews 2017;23:211-24. [DOI: 10.1089/ten.teb.2017.0081] [Cited by in Crossref: 83] [Cited by in F6Publishing: 81] [Article Influence: 16.6] [Reference Citation Analysis]
75 Liu Y, Gill E, Shery Huang YY. Microfluidic on-chip biomimicry for 3D cell culture: a fit-for-purpose investigation from the end user standpoint. Future Sci OA 2017;3:FSO173. [PMID: 28670465 DOI: 10.4155/fsoa-2016-0084] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
76 Cui H, Nowicki M, Fisher JP, Zhang LG. 3D Bioprinting for Organ Regeneration. Adv Healthc Mater 2017;6. [PMID: 27995751 DOI: 10.1002/adhm.201601118] [Cited by in Crossref: 262] [Cited by in F6Publishing: 223] [Article Influence: 52.4] [Reference Citation Analysis]
77 Cui H, Zhu W, Nowicki M, Zhou X, Khademhosseini A, Zhang LG. Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design. Adv Healthc Mater 2016;5:2174-81. [PMID: 27383032 DOI: 10.1002/adhm.201600505] [Cited by in Crossref: 115] [Cited by in F6Publishing: 103] [Article Influence: 19.2] [Reference Citation Analysis]
78 Cui H, Zhu W, Holmes B, Zhang LG. Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration. Adv Sci (Weinh) 2016;3:1600058. [PMID: 27818910 DOI: 10.1002/advs.201600058] [Cited by in Crossref: 83] [Cited by in F6Publishing: 78] [Article Influence: 13.8] [Reference Citation Analysis]