BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cunha J, Guo T, Della Valle G, Koya AN, Proietti Zaccaria R, Alabastri A. Controlling Light, Heat, and Vibrations in Plasmonics and Phononics. Adv Optical Mater 2020;8:2001225. [DOI: 10.1002/adom.202001225] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Kailash, Verma S. Exploring thermoplasmonic profiles of some noble metallic nanospheres. Materials Today Communications 2022;33:104795. [DOI: 10.1016/j.mtcomm.2022.104795] [Reference Citation Analysis]
2 Brites C, Skripka A, Benayas A, Debasu M, Vetrone F, Carlos L. Untangling heat transport dynamics using luminescence nanothermometry.. [DOI: 10.21203/rs.3.rs-2213198/v1] [Reference Citation Analysis]
3 Rej S, Santiago EY, Baturina O, Zhang Y, Burger S, Kment Š, Govorov AO, Naldoni A. Colloidal Titanium Nitride Nanobars for Broadband Inexpensive Plasmonics and Photochemistry from Visible to Mid-IR Wavelengths. Nano Energy 2022. [DOI: 10.1016/j.nanoen.2022.107989] [Reference Citation Analysis]
4 Montaño-priede JL, Mlayah A, Large N. Raman energy density in the context of acoustoplasmonics. Phys Rev B 2022;106:165425. [DOI: 10.1103/physrevb.106.165425] [Reference Citation Analysis]
5 Liu G, Xu J, Chen T, Wang K. Progress in thermoplasmonics for solar energy applications. Physics Reports 2022;981:1-50. [DOI: 10.1016/j.physrep.2022.07.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Ng RC, El Sachat A, Cespedes F, Poblet M, Madiot G, Jaramillo-Fernandez J, Florez O, Xiao P, Sledzinska M, Sotomayor-Torres CM, Chavez-Angel E. Excitation and detection of acoustic phonons in nanoscale systems. Nanoscale 2022;14:13428-51. [PMID: 36082529 DOI: 10.1039/d2nr04100f] [Reference Citation Analysis]
7 Wang M, Wang T, Ojambati OS, Duffin TJ, Kang K, Lee T, Scheer E, Xiang D, Nijhuis CA. Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem. [DOI: 10.1038/s41570-022-00423-4] [Reference Citation Analysis]
8 Agiotis L, Meunier M. Nonlinear Propagation of Laser Light in Plasmonic Nanocomposites. Laser & Photonics Reviews. [DOI: 10.1002/lpor.202200076] [Reference Citation Analysis]
9 Wang L, Feng Y, Li Z, Liu G. Nanoscale thermoplasmonic welding. iScience 2022;25:104422. [PMID: 35663015 DOI: 10.1016/j.isci.2022.104422] [Reference Citation Analysis]
10 Ryabov D, Pashina O, Zograf G, Makarov S, Petrov M. Nonlinear optical heating of all-dielectric super-cavity: efficient light-to-heat conversion through giant thermorefractive bistability. Nanophotonics 2022;0. [DOI: 10.1515/nanoph-2022-0074] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Choi CE, Chakraborty A, Coyle A, Shamiya Y, Paul A. Contact-Free Remote Manipulation of Hydrogel Properties Using Light-Triggerable Nanoparticles: A Materials Science Perspective for Biomedical Applications. Adv Healthc Mater 2022;11:e2102088. [PMID: 35032156 DOI: 10.1002/adhm.202102088] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
12 Moradifar P, Nixon AG, Sharifi T, Driel TB, Ajayan P, Masiello DJ, Alem N. Nanoscale Mapping and Defect‐Assisted Manipulation of Surface Plasmon Resonances in 2D Bi 2 Te 3 /Sb 2 Te 3 In‐Plane Heterostructures. Advanced Optical Materials 2022;10:2101968. [DOI: 10.1002/adom.202101968] [Reference Citation Analysis]
13 Tanaka S, Yoshida T, Watanabe K, Matsumoto Y, Yasuike T, Novko D, Petrović M, Kralj M. Ultrafast Plasmonic Response Ensured by Atomic Scale Confinement. ACS Photonics 2022;9:837-45. [DOI: 10.1021/acsphotonics.1c01454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Mupparapu R, Cunha J, Tantussi F, Jacassi A, Summerer L, Patrini M, Giugni A, Maserati L, Alabastri A, Garoli D, Proietti Zaccaria R. High‐Frequency Light Rectification by Nanoscale Plasmonic Conical Antenna in Point‐Contact‐Insulator‐Metal Architecture. Advanced Energy Materials. [DOI: 10.1002/aenm.202103785] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
15 Yim G, Kang S, Chae SY, Chung E, Song TK, Park JH, Yoon C, Min DH, Jang H. Precursor Heterogeneity Driven Mo-Te Nanoparticle Structural Diversification for Cancer Photo-Theranostics. ACS Appl Mater Interfaces 2022. [PMID: 35176852 DOI: 10.1021/acsami.1c20634] [Reference Citation Analysis]
16 Timm MM, Saviot L, Crut A, Blanchard N, Roiban L, Masenelli-varlot K, Joly-pottuz L, Margueritat J. Study of Single Gold Nanocrystals by Inelastic Light Scattering Spectroscopy. J Phys Chem C. [DOI: 10.1021/acs.jpcc.2c00077] [Reference Citation Analysis]
17 Tan L, Yu S, Jin Y, Li J, Wang P. Inorganic Chiral Hybrid Nanostructures for Tailored Chiroptics and Chirality‐Dependent Photocatalysis. Angewandte Chemie 2022;134. [DOI: 10.1002/ange.202112400] [Reference Citation Analysis]
18 Koya AN. Plasmonic Nanoarchitectures for Single‐Molecule Explorations: An Overview. Advanced Photonics Research 2022;3:2100325. [DOI: 10.1002/adpr.202100325] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Zograf GP, Petrov MI, Makarov SV, Kivshar YS. All-dielectric thermonanophotonics. Adv Opt Photon 2021;13:643. [DOI: 10.1364/aop.426047] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
20 Poblet M, Berté R, Boggiano HD, Li Y, Cortés E, Grinblat G, Maier SA, Bragas AV. Acoustic Coupling between Plasmonic Nanoantennas: Detection and Directionality of Surface Acoustic Waves. ACS Photonics 2021;8:2846-52. [DOI: 10.1021/acsphotonics.1c00741] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Maturi FE, Brites CDS, Ximendes EC, Mills C, Olsen B, Jaque D, Ribeiro SJL, Carlos LD. Going Above and Beyond: A Tenfold Gain in the Performance of Luminescence Thermometers Joining Multiparametric Sensing and Multiple Regression. Laser & Photonics Reviews 2021;15:2100301. [DOI: 10.1002/lpor.202100301] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
22 Koya AN, Cunha J, Guerrero‐becerra KA, Garoli D, Wang T, Juodkazis S, Proietti Zaccaria R. Plasmomechanical Systems: Principles and Applications. Adv Funct Materials 2021;31:2103706. [DOI: 10.1002/adfm.202103706] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
23 Rudenko A, Moloney JV. Coupled kinetic Boltzmann electromagnetic approach for intense ultrashort laser excitation of plasmonic nanostructures. Phys Rev B 2021;104. [DOI: 10.1103/physrevb.104.035418] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
24 Vasileiadis T, Varghese J, Babacic V, Gomis-bresco J, Navarro Urrios D, Graczykowski B. Progress and perspectives on phononic crystals. Journal of Applied Physics 2021;129:160901. [DOI: 10.1063/5.0042337] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 30.0] [Reference Citation Analysis]