BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gao Z, Guo S, Lu X, Orava J, Wagner T, Zheng L, Liu Y, Sun S, He F, Yang P, Ren J, Yang J. Controlling Selective Doping and Energy Transfer between Transition Metal and Rare Earth Ions in Nanostructured Glassy Solids. Advanced Optical Materials 2018;6:1701407. [DOI: 10.1002/adom.201701407] [Cited by in Crossref: 40] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Weng K, Long N, Jiao Q, Ren J, Liu C, Tao H, Dai S, Lin C. A modified chalcogenide flux method for confining metal halide nanocrystals into transparent glassy matrix. Journal of the European Ceramic Society 2020;40:6037-42. [DOI: 10.1016/j.jeurceramsoc.2020.07.017] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
2 Ding N, Xu W, Zhou D, Ji Y, Wang Y, Sun R, Bai X, Zhou J, Song H. Extremely efficient quantum-cutting Cr3+, Ce3+, Yb3+ tridoped perovskite quantum dots for highly enhancing the ultraviolet response of Silicon photodetectors with external quantum efficiency exceeding 70%. Nano Energy 2020;78:105278. [DOI: 10.1016/j.nanoen.2020.105278] [Cited by in Crossref: 17] [Article Influence: 8.5] [Reference Citation Analysis]
3 Yang Y, Sun T, Lin C, Dai S, Zhang X, Ji W, Chen F. Performance modification of third-order optical nonlinearity of chalcogenide glasses by nanocrystallization. Ceramics International 2019;45:18767-71. [DOI: 10.1016/j.ceramint.2019.06.103] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Xu Y, Shen S, Li L, Xiao S, Li J, Tang Z, Yang J. Site-selective doping induced synergistic effect of midgap states and aspect ratio-related charge transfer in Ag2S-ZnS heterostructure toward H2 photoproduction. Journal of Alloys and Compounds 2022;908:164631. [DOI: 10.1016/j.jallcom.2022.164631] [Reference Citation Analysis]
5 Fang Z, Li J, Long Y, Guan B. High-efficiency luminescence in optical glass via the controllable crystallization of KYb 3 F 10 nanocrystals depending on the dopants. Opt Lett 2020;45:3030. [DOI: 10.1364/ol.393669] [Cited by in Crossref: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Ji Y, Liu J, Xu M, Zeng K, Jiang H, Li C, Yang L, Chen Y. Evolution of crystal growth in MgO–Al 2 O 3 –SiO 2 glass ceramics. CrystEngComm 2019;21:1967-73. [DOI: 10.1039/c8ce02036a] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
7 Gao Z, Zhu H, Sun B, Ji Y, Lu X, Tian H, Ren J, Guo S, Zhang J, Yang J, Meng X, Tanaka K. Photonic engineering of superbroadband near-infrared emission in nanoglass composites containing hybrid metal and dielectric nanocrystals. Photon Res 2020;8:698. [DOI: 10.1364/prj.379662] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
8 Chen J, Wang S, Lin J, Chen D. CsRe2F7@glass nanocomposites with efficient up-/down-conversion luminescence: from in situ nanocrystallization synthesis to multi-functional applications. Nanoscale 2019;11:22359-68. [PMID: 31728479 DOI: 10.1039/c9nr08656k] [Cited by in Crossref: 23] [Article Influence: 7.7] [Reference Citation Analysis]
9 Jackson SD, Jain RK. Fiber-based sources of coherent MIR radiation: key advances and future prospects (invited). Opt Express 2020;28:30964-1019. [PMID: 33115085 DOI: 10.1364/OE.400003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
10 Wang X, Wang P, Zhao H, Tian K, Jia S, Wang S, Brambilla G. Ultra-broadband near-infrared photoluminescence in Er3+-Ni2+co-doped transparent glass ceramics containing nano-perovskite KZnF3. Ceramics International 2020;46:25987-91. [DOI: 10.1016/j.ceramint.2020.07.088] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
11 Hao J, Chu Y, Ma Z, Chai Q, Ren J, Liu Y, Luo Y, Yang J, Liu Z, Zhang J, Yuan L, Peng G. Effects of thermal treatment on photoluminescence properties of bismuth/erbium co-doped optical fibers. Optical Fiber Technology 2018;46:141-6. [DOI: 10.1016/j.yofte.2018.10.010] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Wu B, Wu E. Room-temperature visible upconversion luminescence of Ni 2+ sensitized by Yb 3+ in transparent glass ceramics. Opt Mater Express 2018;8:3879. [DOI: 10.1364/ome.8.003879] [Cited by in Crossref: 2] [Article Influence: 0.5] [Reference Citation Analysis]
13 Lu X, Zhang R, Zhang Y, Zhang S, Ren J, Strizik L, Wagner T, Farrell G, Wang P. Crystal-field engineering of ultrabroadband mid-infrared emission in Co2+-doped nano-chalcogenide glass composites. Journal of the European Ceramic Society 2020;40:103-7. [DOI: 10.1016/j.jeurceramsoc.2019.09.006] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
14 Chen D, Peng Y, Li X, Zhong J, Huang H, Chen J. Simultaneous Tailoring of Dual-Phase Fluoride Precipitation and Dopant Distribution in Glass to Control Upconverting Luminescence. ACS Appl Mater Interfaces 2019;11:30053-64. [DOI: 10.1021/acsami.9b11516] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
15 Lu X, Lai Z, Ren J, Strizik L, Wagner T, Du Y, Farrell G, Wang P. Distribution of Tm3+ and Ni2+ in chalcogenide glass ceramics containing Ga2S3 nanocrystals: Influence on photoluminescence properties. Journal of the European Ceramic Society 2019;39:2580-4. [DOI: 10.1016/j.jeurceramsoc.2019.01.055] [Cited by in Crossref: 8] [Article Influence: 2.7] [Reference Citation Analysis]
16 Ruan D, Huang Z, Tang Z, Zhang Y, Wang X, Zhou M, Qi J, Lu T. Bi 3+ -Sensitized La 2 Zr 2 O 7 :Er 3+ Transparent Ceramics with Efficient Up/Down-Conversion Luminescence Properties for Photonic Applications. J Phys Chem C 2020;124:913-20. [DOI: 10.1021/acs.jpcc.9b09837] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
17 Wadhwa A, Wang C, Wang C, Ma R, Qiao X, Fan X, Qian G. Multi‐phase glass‐ceramics containing CaF 2 : Er 3+ and ZnAl 2 O 4 :Cr 3+ nanocrystals for optical temperature sensing. J Am Ceram Soc 2018. [DOI: 10.1111/jace.16098] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
18 Lu X, Lai Z, Zhang R, Guo H, Ren J, Strizik L, Wagner T, Farrell G, Wang P. Ultrabroadband mid-infrared emission from Cr2+-doped infrared transparent chalcogenide glass ceramics embedded with thermally grown ZnS nanorods. Journal of the European Ceramic Society 2019;39:3373-9. [DOI: 10.1016/j.jeurceramsoc.2019.04.048] [Cited by in Crossref: 10] [Article Influence: 3.3] [Reference Citation Analysis]
19 Gao Z, Lai Z, Lu K, Guo S, Liu L, He F, Yang P, Ren J, Zhang J, Yang J. Efficient green upconversion luminescence in highly crystallized ultratransparent nano-glass ceramics containing isotropic KY 3 F 10 nanocrystals. Opt Lett 2019;44:4674. [DOI: 10.1364/ol.44.004674] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
20 Zhang Y, Li X, Lai Z, Zhang R, Lewis E, Azmi AI, Gao Z, Lu X, Chu Y, Liu Y, Chai Q, Sun S, Ren J, Zhang J. Largest Enhancement of Broadband Near-Infrared Emission of Ni 2+ in Transparent Nanoglass Ceramics: Using Nd 3+ as a Sensitizer and Yb 3+ as an Energy-Transfer Bridge. J Phys Chem C 2019;123:10021-7. [DOI: 10.1021/acs.jpcc.9b00359] [Cited by in Crossref: 13] [Article Influence: 4.3] [Reference Citation Analysis]
21 Lu X, Li J, Yang L, Ren J, Sun M, Yang A, Yang Z, Jain RK, Wang P. Broadband mid-infrared (25–55  µm) emission from Co 2+ /Fe 2+ codoped chalcogenide glass ceramics. Opt Lett 2020;45:2676. [DOI: 10.1364/ol.392190] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
22 Wang Z, Huang F, Li D, Lei R, Zhang J, Xu S. An environmental amorphous solid by local crystallization for multifunctional optical applications. Journal of Cleaner Production 2020;270:122441. [DOI: 10.1016/j.jclepro.2020.122441] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
23 Gao Z, Lu K, Lu X, Li X, Han Z, Guo S, Liu L, He F, Yang P, Ren J, Zhang J, Yang J. Ultrabright single-band red upconversion luminescence in highly transparent fluorosilicate glass ceramics containing KMnF 3 perovskite nanocrystals. Opt Lett 2019;44:2959. [DOI: 10.1364/ol.44.002959] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.7] [Reference Citation Analysis]
24 Ren J, Lu X, Lin C, Jain RK. Luminescent ion-doped transparent glass ceramics for mid-infrared light sources [invited]. Opt Express 2020;28:21522. [DOI: 10.1364/oe.395402] [Cited by in Crossref: 19] [Cited by in F6Publishing: 1] [Article Influence: 9.5] [Reference Citation Analysis]
25 Strizik L, Yannopoulos SN, Benekou V, Oswald J, Pavlista M, Prokop V, Wagner T, Orava J. Photoluminescence in pulsed-laser deposited GeGaSbS:Er films. Optical Materials 2018;85:246-53. [DOI: 10.1016/j.optmat.2018.08.055] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Pan Q, Cai Z, Yang Y, Yang D, Kang S, Chen Z, Qiu J, Zhan Q, Dong G. Engineering Tunable Broadband Near‐Infrared Emission in Transparent Rare‐Earth Doped Nanocrystals‐in‐Glass Composites via a Bottom‐Up Strategy. Advanced Optical Materials 2019;7:1801482. [DOI: 10.1002/adom.201801482] [Cited by in Crossref: 24] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
27 Wu Z, Fan Y, Hu R, Ren W, Li Y, Han J, Wang Q, Qiu J, Yang Z, Song Z. Locking Energy Transfer of Rare Earth Ions via an “Electron Jam” Caused by Vertical Photocarrier Separation of a Layered Semiconductor. J Phys Chem C. [DOI: 10.1021/acs.jpcc.1c09322] [Reference Citation Analysis]
28 Gao Z, Lu X, Zhang Y, Guo S, Liu L, Yang G, Liu Y, Sun S, Ren J, Yang J. Correlation between ultrabroadband near-infrared emission and Yb 3+ /Ni 2+ dopants distribution in highly transparent germanate glass-ceramics containing zinc gallogermanate nanospinels. J Am Ceram Soc 2019;102:1619-27. [DOI: 10.1111/jace.16028] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Xiao Z, Qin S, Guo X, Xu X, Anaerguli W, Jiang W, Gou J, Lu A, You W, Han L. Efficient and broadband near-infrared emission of Cr3+-doped glass-ceramics for near-infrared light sources applications. Journal of Luminescence 2022;247:118907. [DOI: 10.1016/j.jlumin.2022.118907] [Reference Citation Analysis]