BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Manjakkal L, Yin L, Nathan A, Wang J, Dahiya R. Energy Autonomous Sweat-Based Wearable Systems. Adv Mater 2021;33:e2100899. [PMID: 34247412 DOI: 10.1002/adma.202100899] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 21.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang J, Sun M, Pei X, Zheng L, Ma C, Liu J, Cao M, Bai J, Zhou M. Flexible Biofuel Cell‐In‐A‐Tube (i ez Tube): An Entirely Self‐Contained Biofuel Cell for Wearable Green Bio‐energy Harvesting. Adv Funct Materials. [DOI: 10.1002/adfm.202209697] [Reference Citation Analysis]
2 Yang P, Yang JL, Liu K, Fan HJ. Hydrogels Enable Future Smart Batteries. ACS Nano 2022. [PMID: 36129392 DOI: 10.1021/acsnano.2c07468] [Reference Citation Analysis]
3 Gai Y, Wang E, Liu M, Xie L, Bai Y, Yang Y, Xue J, Qu X, Xi Y, Li L, Luo D, Li Z. A Self-Powered Wearable Sensor for Continuous Wireless Sweat Monitoring. Small Methods 2022;:e2200653. [PMID: 36074976 DOI: 10.1002/smtd.202200653] [Reference Citation Analysis]
4 Wei J, Zhang X, Mugo SM, Zhang Q. A Portable Sweat Sensor Based on Carbon Quantum Dots for Multiplex Detection of Cardiovascular Health Biomarkers. Anal Chem 2022. [PMID: 36066349 DOI: 10.1021/acs.analchem.2c02587] [Reference Citation Analysis]
5 Du Y, Zhang X, Liu P, Yu D, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022;10:944428. [DOI: 10.3389/fchem.2022.944428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Yan L, Luo X, Yang R, Dai F, Zhu D, Bai J, Zhang L, Lei H. Highly Thermoelectric ZnO@MXene (Ti 3 C 2 T x ) Composite Films Grown by Atomic Layer Deposition. ACS Appl Mater Interfaces. [DOI: 10.1021/acsami.2c05003] [Reference Citation Analysis]
7 Ates HC, Nguyen PQ, Gonzalez-macia L, Morales-narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater. [DOI: 10.1038/s41578-022-00460-x] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Shen H, Xue L, Ma Y, Huang H, Chen L. Recent Advances toward Wearable Sweat Monitoring Systems. Adv Materials Technologies. [DOI: 10.1002/admt.202200513] [Reference Citation Analysis]
9 Selvam S, Park Y, Yim J. Design and Testing of Autonomous Chargeable and Wearable Sweat/Ionic Liquid‐Based Supercapacitors. Advanced Science. [DOI: 10.1002/advs.202201890] [Reference Citation Analysis]
10 Zheng D, Liu W, Dai X, Feng J, Xu X, Yin R, Que W, Shi W, Wu F, Wu H, Cao X. Compressible Zn–Air Batteries Based on Metal–Organic Frameworks Nanoflake‐Assembled Carbon Frameworks for Portable Motion and Temperature Monitors. Adv Energy and Sustain Res 2022;3:2200014. [DOI: 10.1002/aesr.202200014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Yang P, Wei G, Liu A, Huo F, Zhang Z. A review of sampling, energy supply and intelligent monitoring for long-term sweat sensors. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00165-9] [Reference Citation Analysis]
12 Cao Y, Chen B, Zhong H, Pei L, Liu G, Xu Z, Shen J, Ye M. Ti2C3Tx/Polyurethane Constructed by Gas-Liquid Interface Self-Assembly for Underwater Sensing. ACS Appl Mater Interfaces 2022;14:24659-67. [PMID: 35584532 DOI: 10.1021/acsami.2c03565] [Reference Citation Analysis]
13 Ryu J, Landers M, Choi S. A sweat-activated, wearable microbial fuel cell for long-term, on-demand power generation. Biosensors and Bioelectronics 2022;205:114128. [DOI: 10.1016/j.bios.2022.114128] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Khandelwal G, Dahiya R. Self-Powered Active Sensing Based on Triboelectric Generators. Adv Mater 2022;:e2200724. [PMID: 35445458 DOI: 10.1002/adma.202200724] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Wang Y, Haick H, Guo S, Wang C, Lee S, Yokota T, Someya T. Skin bioelectronics towards long-term, continuous health monitoring. Chem Soc Rev 2022. [PMID: 35420617 DOI: 10.1039/d2cs00207h] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
16 Pérez D, Orozco J. Wearable electrochemical biosensors to measure biomarkers with complex blood-to-sweat partition such as proteins and hormones. Mikrochim Acta 2022;189:127. [PMID: 35233646 DOI: 10.1007/s00604-022-05228-2] [Reference Citation Analysis]
17 Park R, Jeon S, Jeong J, Park SY, Han DW, Hong SW. Recent Advances of Point-of-Care Devices Integrated with Molecularly Imprinted Polymers-Based Biosensors: From Biomolecule Sensing Design to Intraoral Fluid Testing. Biosensors (Basel) 2022;12:136. [PMID: 35323406 DOI: 10.3390/bios12030136] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 Zhou J, Men D, Zhang X. Progress in wearable sweat sensors and their applications. Chinese Journal of Analytical Chemistry 2022;50:87-96. [DOI: 10.1016/j.cjac.2021.11.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Yin L, Kim KN, Trifonov A, Podhajny T, Wang J. Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy Environ Sci 2022;15:82-101. [DOI: 10.1039/d1ee03113a] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
20 Wu M, Shi R, Zhou J, Wong TH, Yao K, Li J, Huang X, Li D, Gao Y, Liu Y, Hou S, Yu J, Yu X. Bio-inspired ultra-thin microfluidics for soft sweat-activated batteries and skin electronics. J Mater Chem A. [DOI: 10.1039/d2ta01154a] [Reference Citation Analysis]
21 Forouzandeh P, Ganguly P, Dahiya R, Pillai SC. Supercapacitor electrode fabrication through chemical and physical routes. Journal of Power Sources 2022;519:230744. [DOI: 10.1016/j.jpowsour.2021.230744] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
22 Wu X, Liu J, Guo C, Shi ZZ, Zou Z, Sun W, Li CM. Living cell-based ultrahigh-supercapacitive behaviours. J Mater Chem A 2022;10:1241-7. [DOI: 10.1039/d1ta09818g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Min G, Pullanchiyodan A, Dahiya AS, Hosseini ES, Xu Y, Mulvihill DM, Dahiya R. Ferroelectric-assisted high-performance triboelectric nanogenerators based on electrospun P(VDF-TrFE) composite nanofibers with barium titanate nanofillers. Nano Energy 2021;90:106600. [DOI: 10.1016/j.nanoen.2021.106600] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
24 Ozioko O, Dahiya R. Smart Tactile Gloves for Haptic Interaction, Communication, and Rehabilitation. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202100091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
25 Wu H, Zhang Y, Kjøniksen A, Zhou X, Zhou X. Wearable Biofuel Cells: Advances from Fabrication to Application. Adv Funct Materials 2021;31:2103976. [DOI: 10.1002/adfm.202103976] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]