BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lee J, Llerena Zambrano B, Woo J, Yoon K, Lee T. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications. Adv Mater 2020;32:e1902532. [PMID: 31495991 DOI: 10.1002/adma.201902532] [Cited by in Crossref: 106] [Cited by in F6Publishing: 102] [Article Influence: 53.0] [Reference Citation Analysis]
Number Citing Articles
1 Zeng F, Ning J, Yang Y, Tian C, Huang L, Zhao F, Liu Q, Cui M, Lv J, Jiang Y, Cai X, Kong W. A Photohealable Polyurethane with Superior Robustness and Healing Ratio. Macromolecules. [DOI: 10.1021/acs.macromol.2c00871] [Reference Citation Analysis]
2 Qiu Y, Jia X, Zhang M, Li H. A New Strategy for Fabricating Well-Distributed Polyaniline/Graphene Composite Fibers toward Flexible High-Performance Supercapacitors. Nanomaterials 2022;12:3297. [DOI: 10.3390/nano12193297] [Reference Citation Analysis]
3 Yi P, Zou H, Yu Y, Li X, Li Z, Deng G, Chen C, Fang M, He J, Sun X, Liu X, Shui J, Yu R. MXene-Reinforced Liquid Metal/Polymer Fibers via Interface Engineering for Wearable Multifunctional Textiles. ACS Nano 2022. [PMID: 36094895 DOI: 10.1021/acsnano.2c04863] [Reference Citation Analysis]
4 Hu J, Gao B, Qi Q, Zuo Z, Yan K, Hou S, Zou D. Flexible and Conductive Polymer Threads for Efficient Fiber-Shaped Supercapacitors via Vapor Copolymerization. ACS Omega. [DOI: 10.1021/acsomega.1c05717] [Reference Citation Analysis]
5 Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. Adv Sci (Weinh) 2022;:e2202980. [PMID: 36031395 DOI: 10.1002/advs.202202980] [Reference Citation Analysis]
6 Wang X, Aboalhassan AA, Zhu C, Zhang L, Li G, Yan J, Yu J, Ding B. Controllable Fabrication of Flexible and Foldable Carbon Nanofiber Films. Adv Materials Inter. [DOI: 10.1002/admi.202201231] [Reference Citation Analysis]
7 Man Z, Zhu X, Ye S, Wu G, Bao N. Recent Advances and Future Perspectives of Fiber-Shaped Batteries. Energy Fuels. [DOI: 10.1021/acs.energyfuels.2c01835] [Reference Citation Analysis]
8 Wang H, Yue Y, Zou W, Pan Y, Guo X. The stretchable carbon black-based strain fiber with a remarkable linearity in a wide sensing range. International Journal of Smart and Nano Materials. [DOI: 10.1080/19475411.2022.2107112] [Reference Citation Analysis]
9 Meng X, Xing Z, Hu X, Chen Y. Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. Chin J Polym Sci. [DOI: 10.1007/s10118-022-2803-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Yin Z, Lu H, Gan L, Zhang Y. Electronic Fibers/Textiles for Health‐Monitoring: Fabrication and Application. Adv Materials Technologies. [DOI: 10.1002/admt.202200654] [Reference Citation Analysis]
11 Liu G, Guo M, Xue S, Yang X, Wang L, Zhao C, Xiang D, Li H, Lai J, Li Z, Wu Y. Stretchable, conductive poly(acrylamide‐ co ‐maleic acid)/triethylene glycol/ NaCl double‐crosslinked organohydrogel with excellent antifreezing and sensing properties. J of Applied Polymer Sci. [DOI: 10.1002/app.52797] [Reference Citation Analysis]
12 Cheng T, Wang F, Zhang Y, Li L, Gao S, Yang X, Wang S, Chen P, Lai W. 3D printable conductive polymer hydrogels with ultra-high conductivity and superior stretchability for free-standing elastic all-gel supercapacitors. Chemical Engineering Journal 2022;450:138311. [DOI: 10.1016/j.cej.2022.138311] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
13 Zhou H, Hu X, Fang WH, Su NQ. Revealing intrinsic spin coupling in transition metal-doped graphene. Phys Chem Chem Phys 2022. [PMID: 35758476 DOI: 10.1039/d2cp00906d] [Reference Citation Analysis]
14 Shak Sadi M, Kumpikaitė E. Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. Nanomaterials (Basel) 2022;12:2039. [PMID: 35745378 DOI: 10.3390/nano12122039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Li X, Koh KH, Xue J, So CH, Xiao N, Tin C, Wai K, Lai C. 1D-2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance. Nano Res . [DOI: 10.1007/s12274-022-4413-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Xiao Y, Li Q, Zhang C, Zhang W, Yun W, Yang L. Fabrication of Silver Electrical Circuits on Textile Substrates by Reactive Inkjet Printing. IEEE Sensors J 2022;22:11056-64. [DOI: 10.1109/jsen.2022.3166936] [Reference Citation Analysis]
17 Zhan P, Wang Z, Liu Y, Wang J, Xing Y. Integrating quasi-one-dimensional superconductors on flexible substrates. AIP Advances 2022;12:065319. [DOI: 10.1063/5.0096973] [Reference Citation Analysis]
18 Li Y, Xu X, Zhao L, Yu D, Chen Y, Du L, Wu X. Highly Stretchable, Self-Adhesive, Direction-Aware Wireless Hydrogel-MMT Strain Sensors via a Gradient Structure of Intersecting Networks. ACS Appl Electron Mater 2022;4:2396-404. [DOI: 10.1021/acsaelm.2c00205] [Reference Citation Analysis]
19 Zhou Y, Tao X, Wang Z, An M, Qi K, Ou K, He J, Wang R, Chen X, Dai Z. Electret-Doped Polarized Nanofiber Triboelectric Nanogenerator with Enhanced Electrical Output Performance Based on a Micro-Waveform Structure. ACS Appl Electron Mater 2022;4:2473-80. [DOI: 10.1021/acsaelm.2c00243] [Reference Citation Analysis]
20 Huang J, Xu B, Gao Y, Jiang C, Guan X, Li Z, Han J, Yan Chung K. Surface Microstructural Engineering of Continuous Fibers as One-dimensional Multifunctional Fiber Materials for Wearable Electronic Applications. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.137192] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL. Advances in High-Performance Autonomous Energy and Self-Powered Sensing Textiles with Novel 3D Fabric Structures. Adv Mater 2022;34:e2109355. [PMID: 35083786 DOI: 10.1002/adma.202109355] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 22.0] [Reference Citation Analysis]
22 Long L, Che X, Yao P, Zhang X, Wang J, Li M, Li C. Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core-Shell Wires. ACS Appl Mater Interfaces 2022;14:18690-6. [PMID: 35420779 DOI: 10.1021/acsami.2c02247] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Kang S, Zhao K, Yu D, Zheng X, Huang C. Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00129-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 17.0] [Reference Citation Analysis]
24 Hong SH, Shi HH, Naguib HE. Polypyrrole Nanofoam/Carbon Nanotube Multilayered Electrode for Flexible Electrochemical Capacitors. ACS Appl Energy Mater 2022;5:4059-69. [DOI: 10.1021/acsaem.1c02333] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Huang F, Hu J, Yan X, Meng F. High-linearity, ultralow-detection-limit, and rapid-response strain sensing yarn for data gloves. Journal of Industrial Textiles. [DOI: 10.1177/15280837221084369] [Reference Citation Analysis]
26 Xu Z, Yang D, Yuan X, Hua S, You H, Xing Y, Hu K, Wang J, Xiao Y, Yan Y, Tang X. Objective evaluation of wearable thermoelectric generator: From platform building to performance verification. Review of Scientific Instruments 2022;93:045105. [DOI: 10.1063/5.0087672] [Reference Citation Analysis]
27 Li C, Li L, He B, Ling Y, Pu J, Wei L, Sun L, Zhang Q, Yao Y. Roadmap for flexible solid-state aqueous batteries: From materials engineering and architectures design to mechanical characterizations. Materials Science and Engineering: R: Reports 2022;148:100671. [DOI: 10.1016/j.mser.2022.100671] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
28 Choi W, Heo D, Kim T, Jung S, Choi M, Heo J, Kwon JS, Kim BS, Lee W, Koh WG, Cho JH, Lee S, Hong J. Stress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics. Adv Sci (Weinh) 2022;9:e2105420. [PMID: 35001517 DOI: 10.1002/advs.202105420] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
29 Huang F, Hu J, Yan X. Review of Fiber- or Yarn-Based Wearable Resistive Strain Sensors: Structural Design, Fabrication Technologies and Applications. Textiles 2022;2:81-111. [DOI: 10.3390/textiles2010005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Choi S. Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. Small 2022;:e2107902. [PMID: 35119203 DOI: 10.1002/smll.202107902] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Cui Y, Zheng G, Jiang Z, Zhou Y, Wang Q, Zhou M, Wang P, Yu Y. Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties. Cellulose. [DOI: 10.1007/s10570-022-04431-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
32 Yu Y, Wang X, Yang C, Shang L. Twisted fiber batteries for wearable electronic devices. Smart Materials in Medicine 2022;3:1-3. [DOI: 10.1016/j.smaim.2021.11.001] [Reference Citation Analysis]
33 Liman MLR, Islam MT. Emerging washable textronics for imminent e-waste mitigation: strategies, reliability, and perspectives. J Mater Chem A 2022;10:2697-735. [DOI: 10.1039/d1ta09384c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
34 Wang L, Zhang M, Yang B, Tan J, Ding X, Li W. Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. Small Methods 2021;5:e2100409. [PMID: 34927986 DOI: 10.1002/smtd.202100409] [Cited by in Crossref: 8] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
35 He F, You X, Wang W, Bai T, Xue G, Ye M. Recent Progress in Flexible Microstructural Pressure Sensors toward Human-Machine Interaction and Healthcare Applications. Small Methods 2021;5:e2001041. [PMID: 34927827 DOI: 10.1002/smtd.202001041] [Cited by in Crossref: 12] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
36 Li J, Zhou G, Hong Y, Chen C, He W, Wang S, Chen Y, Wang C, Sun Y, Wong C. A Catalytic and Interfacing PEDOT:PSS/CuPc Polymerized on Cloth Fiber to Electro‐Metalize Stretchable Copper Conductive Pattern. Adv Materials Inter 2022;9:2101462. [DOI: 10.1002/admi.202101462] [Reference Citation Analysis]
37 Xiong Y, Xiao J, Chen J, Xu D, Zhao S, Chen S, Sheng B. A multifunctional hollow TPU fiber filled with liquid metal exhibiting fast electrothermal deformation and recovery. Soft Matter 2021;17:10016-24. [PMID: 34672302 DOI: 10.1039/d1sm01189h] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
38 Wei Y, Li X, Wang Y, Hirtz T, Guo Z, Qiao Y, Cui T, Tian H, Yang Y, Ren TL. Graphene-Based Multifunctional Textile for Sensing and Actuating. ACS Nano 2021. [PMID: 34723481 DOI: 10.1021/acsnano.1c05701] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
39 Kim JH, Utomo DS, Lee D, Choi JW, Song M. Catalytic flower-shaped α-MoO3 lamellar structure for solid-state fiber-dye-sensitized solar cells. Journal of Power Sources 2021;512:230496. [DOI: 10.1016/j.jpowsour.2021.230496] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
40 Chen F, Huang Q, Zheng Z. Permeable Conductors for Wearable and On‐Skin Electronics. Small Structures 2022;3:2100135. [DOI: 10.1002/sstr.202100135] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
41 Fu C, Xia Z, Hurren C, Nilghaz A, Wang X. Textiles in soft robots: Current progress and future trends. Biosens Bioelectron 2021;196:113690. [PMID: 34653713 DOI: 10.1016/j.bios.2021.113690] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 13.0] [Reference Citation Analysis]
42 Zhang F, Ma PC, Wang J, Zhang Q, Feng W, Zhu Y, Zheng Q. Anisotropic conductive networks for multidimensional sensing. Mater Horiz 2021;8:2615-53. [PMID: 34617540 DOI: 10.1039/d1mh00615k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
43 Bi S, Hou L, Lu Y. An integrated wearable strain, temperature and humidity sensor for multifunctional monitoring. Composites Part A: Applied Science and Manufacturing 2021;149:106504. [DOI: 10.1016/j.compositesa.2021.106504] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
44 Sheng F, Yi J, Shen S, Cheng R, Ning C, Ma L, Peng X, Deng W, Dong K, Wang ZL. Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors. ACS Appl Mater Interfaces 2021;13:44868-77. [PMID: 34506103 DOI: 10.1021/acsami.1c12378] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
45 Yun G, Tang S, Lu H, Cole T, Sun S, Shu J, Zheng J, Zhang Q, Zhang S, Dickey MD, Li W. Liquid Metal Hybrid Composites with High-Sensitivity and Large Dynamic Range Enabled by Micro- and Macrostructure Engineering. ACS Appl Polym Mater 2021;3:5302-15. [DOI: 10.1021/acsapm.1c01111] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
46 Zhang W, Liu Q, Chao S, Liu R, Cui X, Sun Y, Ouyang H, Li Z. Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material. ACS Appl Mater Interfaces 2021;13:42966-76. [PMID: 34473476 DOI: 10.1021/acsami.1c13840] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
47 Yan B, Zhou M, Liao X, Wang P, Yu Y, Yuan J, Wang Q. Developing a Multifunctional Silk Fabric with Dual-Driven Heating and Rapid Photothermal Antibacterial Abilities Using High-Yield MXene Dispersions. ACS Appl Mater Interfaces 2021;13:43414-25. [PMID: 34472827 DOI: 10.1021/acsami.1c12915] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
48 He J, Lu C, Jiang H, Han F, Shi X, Wu J, Wang L, Chen T, Wang J, Zhang Y, Yang H, Zhang G, Sun X, Wang B, Chen P, Wang Y, Xia Y, Peng H. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021;597:57-63. [PMID: 34471277 DOI: 10.1038/s41586-021-03772-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 57] [Article Influence: 3.0] [Reference Citation Analysis]
49 Komatsu N, Ichinose Y, Dewey OS, Taylor LW, Trafford MA, Yomogida Y, Wehmeyer G, Pasquali M, Yanagi K, Kono J. Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor. Nat Commun 2021;12:4931. [PMID: 34389723 DOI: 10.1038/s41467-021-25208-z] [Cited by in F6Publishing: 25] [Reference Citation Analysis]
50 Sun F, Peng Y. A strain gradient strategy to quantifying longitudinal compression behavior in slender fibrous assembly structures. Textile Research Journal 2022;92:346-55. [DOI: 10.1177/00405175211036201] [Reference Citation Analysis]
51 Shen G, Zhang C, Liang T, Xin Y, Liang J, Zhong Y, He J, He X, He X. Microstructure Engineering of Stretchable Resistive Strain Sensors with Discrimination Capabilities in Transverse and Longitudinal Directions. Macromol Mater Eng 2021;306:2100283. [DOI: 10.1002/mame.202100283] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
52 Guo Z, Wang Y, Huang J, Zhang S, Zhang R, Ye D, Cai G, Yang H, Gu S, Xu W. Multi-functional and water-resistant conductive silver nanoparticle-decorated cotton textiles with excellent joule heating performances and human motion monitoring. Cellulose 2021;28:7483-95. [DOI: 10.1007/s10570-021-03955-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
53 Zhang Y, Wang H, Lu H, Li S, Zhang Y. Electronic fibers and textiles: Recent progress and perspective. iScience 2021;24:102716. [PMID: 34308283 DOI: 10.1016/j.isci.2021.102716] [Cited by in Crossref: 1] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
54 Guo Q, Chen N, Qu L. The Advance and Perspective on Electrode Materials for Metal–Ion Hybrid Capacitors. Adv Energy Sustain Res 2021;2:2100022. [DOI: 10.1002/aesr.202100022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
55 Wu Y, Zhao X, Shang Y, Chang S, Dai L, Cao A. Application-Driven Carbon Nanotube Functional Materials. ACS Nano 2021;15:7946-74. [PMID: 33988980 DOI: 10.1021/acsnano.0c10662] [Cited by in Crossref: 14] [Cited by in F6Publishing: 23] [Article Influence: 14.0] [Reference Citation Analysis]
56 Ma H, Gao Y, Liu W, Farha FI, Zhang K, Guo L, Xu F. Light-weight strain sensor based on carbon nanotube/epoxy composite yarn. J Mater Sci 2021;56:13156-64. [DOI: 10.1007/s10853-021-06146-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
57 Cao W, Gong Y, Wang W, Chen M, Yang J, Xue Y. Rationally designed hierarchical C/TiO2/Ti multilayer core-sheath wires for high-performance energy storage devices. Nanoscale 2021;13:8658-64. [PMID: 33949558 DOI: 10.1039/d1nr00814e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Yun G, Tang S, Lu H, Zhang S, Dickey MD, Li W. Hybrid‐Filler Stretchable Conductive Composites: From Fabrication to Application. Small Science 2021;1:2000080. [DOI: 10.1002/smsc.202000080] [Cited by in Crossref: 18] [Cited by in F6Publishing: 30] [Article Influence: 18.0] [Reference Citation Analysis]
59 Meng W, Nie M, Liu Z, Zhou J. Buckled Fiber Conductors with Resistance Stability under Strain. Adv Fiber Mater 2021;3:149-59. [DOI: 10.1007/s42765-021-00067-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
60 Xiong J, Chen J, Lee PS. Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human-Robot Interface. Adv Mater 2021;33:e2002640. [PMID: 33025662 DOI: 10.1002/adma.202002640] [Cited by in Crossref: 87] [Cited by in F6Publishing: 89] [Article Influence: 87.0] [Reference Citation Analysis]
61 Wu Y, Yuan W, Xu M, Bai S, Chen Y, Tang Z, Wang C, Yang Y, Zhang X, Yuan Y, Chen M, Zhang X, Liu B, Jiang L. Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors. Chemical Engineering Journal 2021;412:128744. [DOI: 10.1016/j.cej.2021.128744] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
62 Zou X, Chai Y, Ma H, Jiang Q, Zhang W, Ma X, Wang X, Lian H, Huang X, Ji J, Xue M. Ultrahigh Sensitive Wearable Pressure Sensors Based on Reduced Graphene Oxide/Polypyrrole Foam for Sign Language Translation. Adv Mater Technol 2021;6:2001188. [DOI: 10.1002/admt.202001188] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
63 Tang X, Cheng D, Ran J, Li D, He C, Bi S, Cai G, Wang X. Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor. Nanotechnology Reviews 2021;10:221-36. [DOI: 10.1515/ntrev-2021-0021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
64 Ma Z, Yang Z, Gao Q, Bao G, Valiei A, Yang F, Huo R, Wang C, Song G, Ma D, Gao ZH, Li J. Bioinspired tough gel sheath for robust and versatile surface functionalization. Sci Adv 2021;7:eabc3012. [PMID: 33827805 DOI: 10.1126/sciadv.abc3012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
65 Kim DW, Kong M, Jeong U. Interface Design for Stretchable Electronic Devices. Adv Sci (Weinh) 2021;8:2004170. [PMID: 33898192 DOI: 10.1002/advs.202004170] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
66 Sun Y, Hou K, Zhang D, Chang S, Ye L, Cao A, Shang Y. High performance carbon nanotube/polymer composite fibers and water-driven actuators. Composites Science and Technology 2021;206:108676. [DOI: 10.1016/j.compscitech.2021.108676] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
67 Wang Y, Huang X, Zhang X. Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nat Commun 2021;12:1291. [PMID: 33637743 DOI: 10.1038/s41467-021-21577-7] [Cited by in Crossref: 25] [Cited by in F6Publishing: 93] [Article Influence: 25.0] [Reference Citation Analysis]
68 Guo Z, Sun C, Wang J, Cai Z, Ge F. High-Performance Laminated Fabric with Enhanced Photothermal Conversion and Joule Heating Effect for Personal Thermal Management. ACS Appl Mater Interfaces 2021;13:8851-62. [PMID: 33565864 DOI: 10.1021/acsami.0c23123] [Cited by in Crossref: 19] [Cited by in F6Publishing: 32] [Article Influence: 19.0] [Reference Citation Analysis]
69 Yun MJ, Sim YH, Lee DY, Cha SI. Highly stretchable large area woven, knitted and robust braided textile based interconnection for stretchable electronics. Sci Rep 2021;11:4038. [PMID: 33597572 DOI: 10.1038/s41598-021-83480-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
70 Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021;10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
71 Jian X, Li H, Li H, Li Y, Shang Y. Flexible and freestanding MoS2/rGO/CNT hybrid fibers for high-capacity all-solid supercapacitors. Carbon 2021;172:132-7. [DOI: 10.1016/j.carbon.2020.09.095] [Cited by in Crossref: 11] [Cited by in F6Publishing: 28] [Article Influence: 11.0] [Reference Citation Analysis]
72 Qi D, Zhang K, Tian G, Jiang B, Huang Y. Stretchable Electronics Based on PDMS Substrates. Adv Mater 2021;33:e2003155. [PMID: 32830370 DOI: 10.1002/adma.202003155] [Cited by in Crossref: 90] [Cited by in F6Publishing: 82] [Article Influence: 90.0] [Reference Citation Analysis]
73 Gao J, Shang K, Ding Y, Wen Z. Material and configuration design strategies towards flexible and wearable power supply devices: a review. J Mater Chem A 2021;9:8950-65. [DOI: 10.1039/d0ta11260g] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
74 Ma C, Cao W, Zhang W, Ma M, Sun W, Zhang J, Chen F. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chemical Engineering Journal 2021;403:126438. [DOI: 10.1016/j.cej.2020.126438] [Cited by in Crossref: 27] [Cited by in F6Publishing: 60] [Article Influence: 27.0] [Reference Citation Analysis]
75 Huang C, Kang X, Rossi RM, Kovalenko MV, Sun X, Peng H, Boesel LF. Energy harvesting textiles: using wearable luminescent solar concentrators to improve the efficiency of fiber solar cells. J Mater Chem A 2021;9:25974-81. [DOI: 10.1039/d1ta04984d] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
76 Dong J, Li L, Zhang C, Ma P, Dong W, Huang Y, Liu T. Ultra-highly stretchable and anisotropic SEBS/F127 fiber films equipped with an adaptive deformable carbon nanotube layer for dual-mode strain sensing. J Mater Chem A 2021;9:18294-305. [DOI: 10.1039/d1ta04563f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
77 Jansen KMB. Performance Evaluation of Knitted and Stitched Textile Strain Sensors. Sensors (Basel) 2020;20:E7236. [PMID: 33348785 DOI: 10.3390/s20247236] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
78 Ding T, Chan KH, Zhou Y, Wang XQ, Cheng Y, Li T, Ho GW. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat Commun 2020;11:6006. [PMID: 33243999 DOI: 10.1038/s41467-020-19867-7] [Cited by in Crossref: 14] [Cited by in F6Publishing: 48] [Article Influence: 7.0] [Reference Citation Analysis]
79 Jeon Y, Noh I, Seo YC, Han JH, Park Y, Cho EH, Choi KC. Parallel-Stacked Flexible Organic Light-Emitting Diodes for Wearable Photodynamic Therapeutics and Color-Tunable Optoelectronics. ACS Nano 2020;14:15688-99. [PMID: 33155466 DOI: 10.1021/acsnano.0c06649] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
80 Bahru R, Hamzah AA, Mohamed MA. Thermal management of wearable and implantable electronic healthcare devices: Perspective and measurement approach. Int J Energy Res 2021;45:1517-34. [DOI: 10.1002/er.6031] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
81 Utomo DS, Kim JH, Lee D, Park J, Kang YC, Kim YH, Choi JW, Song M. Fractional structured molybdenum oxide catalyst as counter electrodes of all-solid-state fiber dye-sensitized solar cells. J Colloid Interface Sci 2021;584:520-7. [PMID: 33129161 DOI: 10.1016/j.jcis.2020.10.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
82 Higgins SG, Lo Fiego A, Patrick I, Creamer A, Stevens MM. Organic Bioelectronics: Using Highly Conjugated Polymers to Interface with Biomolecules, Cells, and Tissues in the Human Body. Adv Mater Technol 2020;5:2000384. [DOI: 10.1002/admt.202000384] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
83 Won C, Lee S, Jung HH, Woo J, Yoon K, Lee J, Kwon C, Lee M, Han H, Mei Y, Jang KI, Lee T. Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H2 Sensors. ACS Appl Mater Interfaces 2020;12:45243-53. [PMID: 32893618 DOI: 10.1021/acsami.0c10460] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
84 Jiang Y, Dong K, Li X, An J, Wu D, Peng X, Yi J, Ning C, Cheng R, Yu P, Wang ZL. Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skin‐Like Highly Sensitive Self‐Powered Haptic Sensors. Adv Funct Mater 2021;31:2005584. [DOI: 10.1002/adfm.202005584] [Cited by in Crossref: 66] [Cited by in F6Publishing: 58] [Article Influence: 33.0] [Reference Citation Analysis]
85 Hao B, Deng Z, Bi S, Ran J, Cheng D, Luo L, Cai G, Wang X, Tang X. In situ polymerization of pyrrole on CNT/cotton multifunctional composite yarn for supercapacitors. Ionics 2021;27:279-88. [DOI: 10.1007/s11581-020-03784-2] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
86 Kanygin MA, Shafiei M, Bahreyni B. Electrostatic Twisting of Core–Shell Nanofibers for Strain Sensing Applications. ACS Appl Polym Mater 2020;2:4472-80. [DOI: 10.1021/acsapm.0c00580] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
87 Ma L, Bi Z, Zhang W, Zhang Z, Xiao Y, Niu H, Huang Y. Synthesis of a Three-Dimensional Interconnected Oxygen-, Boron-, Nitrogen-, and Phosphorus Tetratomic-Doped Porous Carbon Network as Electrode Material for the Construction of a Superior Flexible Supercapacitor. ACS Appl Mater Interfaces 2020;12:46170-80. [DOI: 10.1021/acsami.0c13454] [Cited by in Crossref: 13] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
88 Li M, Chen J, Zhong W, Luo M, Wang W, Qing X, Lu Y, Liu Q, Liu K, Wang Y, Wang D. Large-Area, Wearable, Self-Powered Pressure-Temperature Sensor Based on 3D Thermoelectric Spacer Fabric. ACS Sens 2020;5:2545-54. [PMID: 32672940 DOI: 10.1021/acssensors.0c00870] [Cited by in Crossref: 45] [Cited by in F6Publishing: 45] [Article Influence: 22.5] [Reference Citation Analysis]
89 Niu B, Hua T, Xu B. Robust Deposition of Silver Nanoparticles on Paper Assisted by Polydopamine for Green and Flexible Electrodes. ACS Sustainable Chem Eng 2020;8:12842-51. [DOI: 10.1021/acssuschemeng.0c03098] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
90 Li M, Han S, Zhou Y. Recent Advances in Flexible Field‐Effect Transistors toward Wearable Sensors. Advanced Intelligent Systems 2020;2:2000113. [DOI: 10.1002/aisy.202000113] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 10.5] [Reference Citation Analysis]
91 Ma C, Yuan Q, Du H, Ma MG, Si C, Wan P. Multiresponsive MXene (Ti3C2Tx)-Decorated Textiles for Wearable Thermal Management and Human Motion Monitoring. ACS Appl Mater Interfaces 2020;12:34226-34. [PMID: 32673490 DOI: 10.1021/acsami.0c10750] [Cited by in Crossref: 24] [Cited by in F6Publishing: 59] [Article Influence: 12.0] [Reference Citation Analysis]
92 Mackanic DG, Kao M, Bao Z. Enabling Deformable and Stretchable Batteries. Adv Energy Mater 2020;10:2001424. [DOI: 10.1002/aenm.202001424] [Cited by in Crossref: 33] [Cited by in F6Publishing: 55] [Article Influence: 16.5] [Reference Citation Analysis]
93 Qiao L, Benzigar MR, Subramony JA, Lovell NH, Liu G. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Appl Mater Interfaces 2020;12:34337-61. [DOI: 10.1021/acsami.0c07614] [Cited by in Crossref: 14] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
94 Arrabito G, Aleeva Y, Ferrara V, Prestopino G, Chiappara C, Pignataro B. On the Interaction between 1D Materials and Living Cells. J Funct Biomater 2020;11:E40. [PMID: 32531950 DOI: 10.3390/jfb11020040] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
95 Yu C, An J, Zhou R, Xu H, Zhou J, Chen Q, Sun G, Huang W. Microstructure Design of Carbonaceous Fibers: A Promising Strategy toward High‐Performance Weaveable/Wearable Supercapacitors. Small 2020;16:2000653. [DOI: 10.1002/smll.202000653] [Cited by in Crossref: 16] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
96 Uduste I, Kaasik F, Johanson U, Aabloo A, Must I. An All-Textile Non-muscular Biomimetic Actuator Based on Electrohydrodynamic Swelling. Front Bioeng Biotechnol 2020;8:408. [PMID: 32509743 DOI: 10.3389/fbioe.2020.00408] [Reference Citation Analysis]
97 Jamali V, Niroui F, Taylor LW, Dewey OS, Koscher BA, Pasquali M, Alivisatos AP. Perovskite-Carbon Nanotube Light-Emitting Fibers. Nano Lett 2020;20:3178-84. [PMID: 32353239 DOI: 10.1021/acs.nanolett.9b05225] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
98 Chen G, Li Y, Bick M, Chen J. Smart Textiles for Electricity Generation. Chem Rev 2020;120:3668-720. [DOI: 10.1021/acs.chemrev.9b00821] [Cited by in Crossref: 208] [Cited by in F6Publishing: 336] [Article Influence: 104.0] [Reference Citation Analysis]
99 Chen J, Wen H, Zhang G, Lei F, Feng Q, Liu Y, Cao X, Dong H. Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core-Shell Segmental Configuration for Wearable Strain and Temperature Sensors. ACS Appl Mater Interfaces 2020;12:7565-74. [PMID: 31971764 DOI: 10.1021/acsami.9b20612] [Cited by in Crossref: 25] [Cited by in F6Publishing: 56] [Article Influence: 12.5] [Reference Citation Analysis]
100 Gao Q, Kopera BAF, Zhu J, Liao X, Gao C, Retsch M, Agarwal S, Greiner A. Breathable and Flexible Polymer Membranes with Mechanoresponsive Electric Resistance. Adv Funct Mater 2020;30:1907555. [DOI: 10.1002/adfm.201907555] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
101 Creighton MA, Yuen MC, Morris NJ, Tabor CE. Graphene-based encapsulation of liquid metal particles. Nanoscale 2020;12:23995-4005. [DOI: 10.1039/d0nr05263a] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
102 Zhu C, Wang H, Guan C. Recent progress on hollow array architectures and their applications in electrochemical energy storage. Nanoscale Horiz 2020;5:1188-99. [DOI: 10.1039/d0nh00332h] [Cited by in Crossref: 13] [Cited by in F6Publishing: 30] [Article Influence: 6.5] [Reference Citation Analysis]
103 Arab Hassani F, Shi Q, Wen F, He T, Haroun A, Yang Y, Feng Y, Lee C. Smart materials for smart healthcare– moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Materials in Medicine 2020;1:92-124. [DOI: 10.1016/j.smaim.2020.07.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 32] [Article Influence: 11.0] [Reference Citation Analysis]