BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shahriari D, Loke G, Tafel I, Park S, Chiang PH, Fink Y, Anikeeva P. Scalable Fabrication of Porous Microchannel Nerve Guidance Scaffolds with Complex Geometries. Adv Mater 2019;31:e1902021. [PMID: 31168865 DOI: 10.1002/adma.201902021] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
Number Citing Articles
1 Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioactive Materials 2023;19:511-37. [DOI: 10.1016/j.bioactmat.2022.04.027] [Reference Citation Analysis]
2 Saeheng C, Fuongfuchat A, Sriyai M, Daranarong D, Namhongsa M, Molloy R, Meepowpan P, Punyodom W. Microstructure, thermal and rheological properties of poly(L‐lactide‐ coε ‐caprolactone) tapered block copolymer for potential use in biomedical applications. J of Applied Polymer Sci. [DOI: 10.1002/app.53091] [Reference Citation Analysis]
3 Rosenfeld D, Field H, Kim YJ, Pang KKL, Nagao K, Koehler F, Anikeeva P. Magnetothermal Modulation of Calcium‐Dependent Nerve Growth. Adv Funct Materials. [DOI: 10.1002/adfm.202204558] [Reference Citation Analysis]
4 Kong L, Gao X, Qian Y, Sun W, You Z, Fan C. Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development. Theranostics 2022;12:4993-5014. [PMID: 35836812 DOI: 10.7150/thno.74571] [Reference Citation Analysis]
5 Tanzim F, Subeshan B, Asmatulu R. Improving the saline water evaporation rates using highly conductive carbonaceous materials under infrared light for improved freshwater production. Desalination 2022;531:115710. [DOI: 10.1016/j.desal.2022.115710] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Deng P, Chen F, Zhang H, Chen Y, Zhou J. Multifunctional Double-Layer Composite Hydrogel Conduit Based on Chitosan for Peripheral Nerve Repairing. Adv Healthc Mater 2022;:e2200115. [PMID: 35396930 DOI: 10.1002/adhm.202200115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Xu W, Jambhulkar S, Ravichandran D, Zhu Y, Lanke S, Bawareth M, Song K. A mini‐review of microstructural control during composite fiber spinning. Polymer International. [DOI: 10.1002/pi.6350] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Hibbitts AJ, Kočí Z, Kneafsey S, Matsiko A, Žilić L, Dervan A, Hinton P, Chen G, Cavanagh B, Dowling J, McCoy C, Buckley CT, Archibald SJ, O'Brien FJ. Multi-Factorial Nerve Guidance Conduit Engineering Improves Outcomes in Inflammation, Angiogenesis and Large Defect Nerve Repair. Matrix Biol 2022:S0945-053X(22)00002-6. [PMID: 35032612 DOI: 10.1016/j.matbio.2022.01.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Fahimizadeh M, Pasbakhsh P, Mae LS, Tan JBL, Raman RS. Multifunctional, sustainable, and biological non-ureolytic self-healing systems for cement-based materials. Engineering 2022. [DOI: 10.1016/j.eng.2021.11.016] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Qian Y, Lin H, Yan Z, Shi J, Fan C. Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. Materials Today 2021;51:165-87. [DOI: 10.1016/j.mattod.2021.09.014] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
11 Wang T, Han Y, Wu Z, Qiu S, Rao Z, Zhao C, Zhu Q, Quan D, Bai Y, Liu X. Tissue-Specific Hydrogels for 3D Printing and Potential Application in Peripheral Nerve Regeneration. Tissue Eng Part A 2021. [PMID: 34309417 DOI: 10.1089/ten.TEA.2021.0093] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Sun H, Li R, Li H, Weng Z, Wu G, Kerns P, Suib S, Wang X, Zhang Y. Bioinspired Oil-Infused Slippery Surfaces with Water and Ion Barrier Properties. ACS Appl Mater Interfaces 2021;13:33464-76. [PMID: 34241991 DOI: 10.1021/acsami.1c06632] [Reference Citation Analysis]
13 Lu Q, Zhang F, Cheng W, Gao X, Ding Z, Zhang X, Lu Q, Kaplan DL. Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration. Adv Healthc Mater 2021;10:e2100427. [PMID: 34038626 DOI: 10.1002/adhm.202100427] [Cited by in Crossref: 7] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
14 Yan Z, Qian Y, Fan C. Biomimicry in 3D printing design: implications for peripheral nerve regeneration. Regen Med 2021;16:683-701. [PMID: 34189955 DOI: 10.2217/rme-2020-0182] [Reference Citation Analysis]
15 Lomboni DJ, Steeves A, Schock S, Bonetti L, De Nardo L, Variola F. Compounded topographical and physicochemical cueing by micro-engineered chitosan substrates on rat dorsal root ganglion neurons and human mesenchymal stem cells. Soft Matter 2021;17:5284-302. [PMID: 34075927 DOI: 10.1039/d0sm02170a] [Reference Citation Analysis]
16 Jin Y, Shahriari D, Jeon EJ, Park S, Choi YS, Back J, Lee H, Anikeeva P, Cho SW. Functional Skeletal Muscle Regeneration with Thermally Drawn Porous Fibers and Reprogrammed Muscle Progenitors for Volumetric Muscle Injury. Adv Mater 2021;33:e2007946. [PMID: 33605006 DOI: 10.1002/adma.202007946] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
17 Wang Z, Chen M, Zheng Y, Zhang J, Wang Z, Yang J, Zhang Q, He B, Qi M, Zhang H, Li K, Wei L. Advanced Thermally Drawn Multimaterial Fibers: Structure-Enabled Functionalities. Advanced Devices & Instrumentation 2021;2021:1-15. [DOI: 10.34133/2021/9676470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
18 van der Elst L, Faccini de Lima C, Gokce Kurtoglu M, Koraganji VN, Zheng M, Gumennik A. 3D Printing in Fiber-Device Technology. Adv Fiber Mater 2021;3:59-75. [DOI: 10.1007/s42765-020-00056-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 2] [Article Influence: 9.0] [Reference Citation Analysis]
19 Huang Q, Cai Y, Zhang X, Liu J, Liu Z, Li B, Wong H, Xu F, Sheng L, Sun D, Qin J, Luo Z, Lu X. Aligned Graphene Mesh-Supported Double Network Natural Hydrogel Conduit Loaded with Netrin-1 for Peripheral Nerve Regeneration. ACS Appl Mater Interfaces 2021;13:112-22. [PMID: 33397079 DOI: 10.1021/acsami.0c16391] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
20 Lee Y, Canales A, Loke G, Kanik M, Fink Y, Anikeeva P. Selectively Micro-Patternable Fibers via In-Fiber Photolithography. ACS Cent Sci 2020;6:2319-25. [PMID: 33376793 DOI: 10.1021/acscentsci.0c01188] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
21 Shahriari D, Rosenfeld D, Anikeeva P. Emerging Frontier of Peripheral Nerve and Organ Interfaces. Neuron 2020;108:270-85. [PMID: 33120023 DOI: 10.1016/j.neuron.2020.09.025] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
22 Farajikhah S, Runge AFJ, Boumelhem BB, Rukhlenko ID, Stefani A, Sayyar S, Innis PC, Fraser ST, Fleming S, Large MCJ. Thermally drawn biodegradable fibers with tailored topography for biomedical applications. J Biomed Mater Res B Appl Biomater 2021;109:733-43. [PMID: 33073509 DOI: 10.1002/jbm.b.34739] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
23 Fang J, Hsu H, Hsu R, Peng C, Lu Y, Chen Y, Chen S, Hu S. 4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting. NPG Asia Mater 2020;12. [DOI: 10.1038/s41427-020-00244-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
24 Tao J, Liu H, Wu W, Zhang J, Liu S, Zhang J, Huang Y, Xu X, He H, Yang S, Gou M. 3D‐Printed Nerve Conduits with Live Platelets for Effective Peripheral Nerve Repair. Adv Funct Mater 2020;30:2004272. [DOI: 10.1002/adfm.202004272] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
25 Rey F, Barzaghini B, Nardini A, Bordoni M, Zuccotti GV, Cereda C, Raimondi MT, Carelli S. Advances in Tissue Engineering and Innovative Fabrication Techniques for 3-D-Structures: Translational Applications in Neurodegenerative Diseases. Cells 2020;9:E1636. [PMID: 32646008 DOI: 10.3390/cells9071636] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
26 Yan W, Dong C, Xiang Y, Jiang S, Leber A, Loke G, Xu W, Hou C, Zhou S, Chen M, Hu R, Shum PP, Wei L, Jia X, Sorin F, Tao X, Tao G. Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today 2020;35:168-94. [DOI: 10.1016/j.mattod.2019.11.006] [Cited by in Crossref: 50] [Cited by in F6Publishing: 13] [Article Influence: 25.0] [Reference Citation Analysis]
27 Kaplan B, Merdler U, Szklanny AA, Redenski I, Guo S, Bar-Mucha Z, Michael N, Levenberg S. Rapid prototyping fabrication of soft and oriented polyester scaffolds for axonal guidance. Biomaterials 2020;251:120062. [PMID: 32388032 DOI: 10.1016/j.biomaterials.2020.120062] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
28 Liu Z, Liu J, Cui X, Wang X, Zhang L, Tang P. Recent Advances on Magnetic Sensitive Hydrogels in Tissue Engineering. Front Chem 2020;8:124. [PMID: 32211375 DOI: 10.3389/fchem.2020.00124] [Cited by in Crossref: 27] [Cited by in F6Publishing: 46] [Article Influence: 13.5] [Reference Citation Analysis]
29 Shadman S, Nguyen‐dang T, Das Gupta T, Page AG, Richard I, Leber A, Ruza J, Krishnamani G, Sorin F. Microstructured Biodegradable Fibers for Advanced Control Delivery. Adv Funct Mater 2020;30:1910283. [DOI: 10.1002/adfm.201910283] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
30 Jang SR, Kim JI, Park CH, Kim CS. The controlled design of electrospun PCL/silk/quercetin fibrous tubular scaffold using a modified wound coil collector and L-shaped ground design for neural repair. Mater Sci Eng C Mater Biol Appl 2020;111:110776. [PMID: 32279813 DOI: 10.1016/j.msec.2020.110776] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
31 Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent Progress and Perspectives of Thermally Drawn Multimaterial Fiber Electronics. Adv Mater 2020;32:e1904911. [PMID: 31657053 DOI: 10.1002/adma.201904911] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 34.5] [Reference Citation Analysis]
32 Wu Y, Zhang Q, Wang H, Wang M. Multiscale engineering of functional organic polymer interfaces for neuronal stimulation and recording. Mater Chem Front 2020;4:3444-71. [DOI: 10.1039/d0qm00279h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
33 Chen J, Yang Y, Wu J, Rui X, Wang W, Ren R, Zhang Q, Chen Q, Yin D. Spatiotemporal variations of contact stress between liquid-crystal films and fibroblasts Guide cell fate and skin regeneration. Colloids Surf B Biointerfaces 2020;188:110745. [PMID: 31881410 DOI: 10.1016/j.colsurfb.2019.110745] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Pritchard ZD, Beer MP, Whelan RJ, Scott TF, Burns MA. Modeling and Correcting Cure‐Through in Continuous Stereolithographic 3D Printing. Adv Mater Technol 2019;4:1900700. [DOI: 10.1002/admt.201900700] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]