BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Adv Mater 2020;32:e1901924. [PMID: 31282063 DOI: 10.1002/adma.201901924] [Cited by in Crossref: 292] [Cited by in F6Publishing: 280] [Article Influence: 146.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang S, Wang J, Liao S, Chen J, Wei Q. Hierarchical core-shell polypyrrole@NiCo layered double hydroxide arrays grown on stainless steel yarn with high flexibility for 1D symmetric yarn-shaped supercapacitors. Journal of Alloys and Compounds 2022;926:166811. [DOI: 10.1016/j.jallcom.2022.166811] [Reference Citation Analysis]
2 Chen L, He M, Li L, Yuan S, Chen A, Chen M, Wang Y, Sun L, Wei L, Zhang T, Li Q, Zhang Q. Hydrochromic CsPbBr3-KBr Microcrystals for Flexible Anti-Counterfeiting and Wearable Self-Powered Biomechanical Monitoring. Chemical Engineering Journal 2022;450:138279. [DOI: 10.1016/j.cej.2022.138279] [Reference Citation Analysis]
3 Li X, Cao L, Chen L. Multifunctional ionic conductive hydrogels based on gelatin and 2-acrylamido-2-methylpropane sulfonic acid as strain sensors. Biochemical Engineering Journal 2022;187:108606. [DOI: 10.1016/j.bej.2022.108606] [Reference Citation Analysis]
4 Hu Y, Parida K, Zhang H, Wang X, Li Y, Zhou X, Morris SA, Liew WH, Wang H, Li T, Jiang F, Yang M, Alexe M, Du Z, Gan CL, Yao K, Xu B, Lee PS, Fan HJ. Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-33325-6] [Reference Citation Analysis]
5 Konwar G, Saxena P, Rahi S, Tiwari SP. Edible Dielectric Composite for the Enhancement of Performance and Electromechanical Stability of Eco-Friendly Flexible Organic Transistors. ACS Appl Electron Mater . [DOI: 10.1021/acsaelm.2c01082] [Reference Citation Analysis]
6 Yu C, Xu J, Yang T, Qi T, Ye Y, Li T, Shen Y, Yang L, Zeng L, Wang H, Zhou C, Rao G. An enhanced nano-energy harvesting device by hybrid piezoelectric/triboelectric composites. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-09037-4] [Reference Citation Analysis]
7 Gan T, Xiao Q, Handschuh-Wang S, Huang X, Wang H, Deng X, Hu S, Wang B, Wu Q, Zhou X. Conformally Adhesive, Large-Area, Solidlike, yet Transient Liquid Metal Thin Films and Patterns via Gelatin-Regulated Droplet Deposition and Sintering. ACS Appl Mater Interfaces 2022. [PMID: 36068651 DOI: 10.1021/acsami.2c12880] [Reference Citation Analysis]
8 Wu S, Guo J, Wang Y, Xie H, Zhou S. Cryopolymerized Polyampholyte Gel with Antidehydration, Self-Healing, and Shape-Memory Properties for Sustainable and Tunable Sensing Electronics. ACS Appl Mater Interfaces 2022. [PMID: 36067465 DOI: 10.1021/acsami.2c13223] [Reference Citation Analysis]
9 Miah MR, Yang M, Hossain MM, Khandaker S, Awual MR. Textile-based flexible and printable sensors for next generation uses and their contemporary challenges: A critical review. Sensors and Actuators A: Physical 2022;344:113696. [DOI: 10.1016/j.sna.2022.113696] [Reference Citation Analysis]
10 Kim S, Jeon J, Kim Y, Park J. Transparent and Skin‐Attachable Silver Nanowire Electrodes Embedded on Dissolvable Polyurethane for Highly Conformable Wearable Electronics. Adv Materials Technologies. [DOI: 10.1002/admt.202200968] [Reference Citation Analysis]
11 Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. Adv Sci (Weinh) 2022;:e2202980. [PMID: 36031395 DOI: 10.1002/advs.202202980] [Reference Citation Analysis]
12 Zhang P, Deng L, Zhang H, He J, Fan X, Ma Y. Enhanced Performance of Triboelectric Nanogenerator with Micro‐Rhombic Patterned PDMS for Self‐Powered Wearable Sensing. Adv Materials Inter. [DOI: 10.1002/admi.202201265] [Reference Citation Analysis]
13 Deng HT, Wen DL, Feng T, Wang YL, Zhang XR, Huang P, Zhang XS. Silicone Rubber Based-Conductive Composites for Stretchable "All-in-One" Microsystems. ACS Appl Mater Interfaces 2022. [PMID: 36006298 DOI: 10.1021/acsami.2c08333] [Reference Citation Analysis]
14 Xiang L, Wang Y, Xia F, Liu F, He D, Long G, Zeng X, Liang X, Jin C, Wang Y, Pan A, Peng LM, Hu Y. An epidermal electronic system for physiological information acquisition, processing, and storage with an integrated flash memory array. Sci Adv 2022;8:eabp8075. [PMID: 35977018 DOI: 10.1126/sciadv.abp8075] [Reference Citation Analysis]
15 Banerjee PS, Rana DK, Banerjee SS. Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials. Adv Colloid Interface Sci 2022;308:102752. [PMID: 36007286 DOI: 10.1016/j.cis.2022.102752] [Reference Citation Analysis]
16 Wang Z, Valenzuela C, Wu J, Chen Y, Wang L, Feng W. Bioinspired Freeze-Tolerant Soft Materials: Design, Properties, and Applications. Small 2022;:e2201597. [PMID: 35971186 DOI: 10.1002/smll.202201597] [Reference Citation Analysis]
17 Yu B, Luo Y, Li J, Ye H, Li KH. Interface Engineering in Chip-Scale GaN Optical Devices for Near-Hysteresis-Free Hydraulic Pressure Sensing. ACS Appl Mater Interfaces 2022. [PMID: 35951558 DOI: 10.1021/acsami.2c09291] [Reference Citation Analysis]
18 Han JW, Prameswati A, Entifar SAN, Kim JH, Wibowo AF, Park J, Lee J, Kim S, Lim DC, Moon M, Kim M, Kim YH. Highly Conductive, Flexible, and Robust Silver Nanowire-Embedded Carboxymethyl Cellulose/Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Composite Films for Wearable Heaters and On-Skin Sensors. Electron Mater Lett . [DOI: 10.1007/s13391-022-00365-5] [Reference Citation Analysis]
19 Huang J, Han S, Zhu J, Wu Q, Chen H, Chen A, Zhang J, Huang B, Yang X, Guan L. Mechanically Stable All Flexible Supercapacitors with Fracture and Fatigue Resistance under Harsh Temperatures. Adv Funct Materials. [DOI: 10.1002/adfm.202205708] [Reference Citation Analysis]
20 Shi W, Wang Z, Song H, Chang Y, Hou W, Li Y, Han G. High-Sensitivity and Extreme Environment-Resistant Sensors Based on PEDOT:PSS@PVA Hydrogel Fibers for Physiological Monitoring. ACS Appl Mater Interfaces 2022. [PMID: 35862578 DOI: 10.1021/acsami.2c09556] [Reference Citation Analysis]
21 Al-Daraghmeh MY, Stone RT. A review of medical wearables: materials, power sources, sensors, and manufacturing aspects of human wearable technologies. J Med Eng Technol 2022;:1-15. [PMID: 35856912 DOI: 10.1080/03091902.2022.2097743] [Reference Citation Analysis]
22 Selvam S, Park Y, Yim J. Design and Testing of Autonomous Chargeable and Wearable Sweat/Ionic Liquid‐Based Supercapacitors. Advanced Science. [DOI: 10.1002/advs.202201890] [Reference Citation Analysis]
23 Zhou J, Shao Q, Tang C, Qiao F, Lu T, Li X, Liu X, Zhao H. Conformable and Compact Multiaxis Tactile Sensor for Human and Robotic Grasping via Anisotropic Waveguides. Adv Materials Technologies. [DOI: 10.1002/admt.202200595] [Reference Citation Analysis]
24 Cheng T, Wang F, Zhang Y, Li L, Gao S, Yang X, Wang S, Chen P, Lai W. 3D printable conductive polymer hydrogels with ultra-high conductivity and superior stretchability for free-standing elastic all-gel supercapacitors. Chemical Engineering Journal 2022;450:138311. [DOI: 10.1016/j.cej.2022.138311] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
25 Hu S, Du X, Bi Y, He P, Mu Y, Liu C, Gao Q, Yin M, Guo W. Smart Hydrogels Based on Self-Assembly of One Short Single-Stranded DNA for Functional Surface Patterning. ACS Appl Polym Mater . [DOI: 10.1021/acsapm.2c00697] [Reference Citation Analysis]
26 Li Z, Chen J, Wen A, Guo F, Hu D, Zhu W, Chen W. Temperature Sensitivity of Flexible Co3O4/PVDF Dielectric Nanocomposites. J Electron Mater . [DOI: 10.1007/s11664-022-09744-y] [Reference Citation Analysis]
27 Pal S, Su YZ, Chen YW, Yu CH, Kung CW, Yu SS. 3D Printing of Metal-Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS Appl Mater Interfaces 2022;14:28247-57. [PMID: 35604841 DOI: 10.1021/acsami.2c02690] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Yan T, Wu Y, Tang J, Pan Z. Flexible strain sensors fabricated using aligned carbon nanofiber membranes with cross-stacked structure for extensive applications. International Journal of Smart and Nano Materials. [DOI: 10.1080/19475411.2022.2091059] [Reference Citation Analysis]
29 Zazoum B, Batoo KM, Khan MAA. Recent Advances in Flexible Sensors and Their Applications. Sensors (Basel) 2022;22:4653. [PMID: 35746434 DOI: 10.3390/s22124653] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Meng Q, Kang C, Zhu J, Xiao X, Ma Y, Huo H, Zuo P, Du C, Lou S, Yin G. DNA Helix Structure Inspired Flexible Lithium-Ion Batteries with High Spiral Deformability and Long-Lived Cyclic Stability. Nano Lett 2022. [PMID: 35708317 DOI: 10.1021/acs.nanolett.2c01820] [Reference Citation Analysis]
31 Qu X, Wu Y, Ji P, Wang B, Liang Q, Han Z, Li J, Wu Z, Chen S, Zhang G, Wang H. Crack-Based Core-Sheath Fiber Strain Sensors with an Ultralow Detection Limit and an Ultrawide Working Range. ACS Appl Mater Interfaces 2022. [PMID: 35695912 DOI: 10.1021/acsami.2c04559] [Reference Citation Analysis]
32 Chen W, Xiao H, Zhou X, Xu X, Jiang S, Qin Z, Ding S, Bian C, Liu Z. Highly Deformable Graphene/Poly(3,4-ethylenedioxythiophene):Poly(styrene Sulfonate) Hydrogel Composite Film for Stretchable Supercapacitors. ACS Appl Energy Mater . [DOI: 10.1021/acsaem.2c00815] [Reference Citation Analysis]
33 Liu C, Zhang R, Li P, Qu J, Chao P, Mo Z, Yang T, Qing N, Tang L. Conductive Hydrogels with Ultrastretchability and Adhesiveness for Flame- and Cold-Tolerant Strain Sensors. ACS Appl Mater Interfaces 2022;14:26088-98. [PMID: 35608957 DOI: 10.1021/acsami.2c07501] [Reference Citation Analysis]
34 Byun SH, Yun JH, Heo SY, Shi C, Lee GJ, Agno KC, Jang KI, Xiao J, Song YM, Jeong JW. Self-Cooling Gallium-Based Transformative Electronics with a Radiative Cooler for Reliable Stiffness Tuning in Outdoor Use. Adv Sci (Weinh) 2022;:e2202549. [PMID: 35661444 DOI: 10.1002/advs.202202549] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Zhou A, Wang H, Zhang Y, Hu C. Recent Progress of Flexible OLEDs for Wearable Devices. Fiber and Integrated Optics. [DOI: 10.1080/01468030.2022.2083532] [Reference Citation Analysis]
36 Guo J, Wang Y, Zhang H, Zhao Y. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. Adv Mater 2022;34:e2110024. [PMID: 35081264 DOI: 10.1002/adma.202110024] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Han JW, Wibowo AF, Park J, Kim JH, Prameswati A, Entifar SAN, Lee J, Kim S, Chan Lim D, Moon M, Kim M, Kim YH. Highly stretchable, robust, and conductive lab-synthesized PEDOT:PSS conductive polymer/hydroxyethyl cellulose films for on-skin health-monitoring devices. Organic Electronics 2022;105:106499. [DOI: 10.1016/j.orgel.2022.106499] [Reference Citation Analysis]
38 Zhao H, Hao S, Fu Q, Zhang X, Meng L, Xu F, Yang J. Ultrafast Fabrication of Lignin-Encapsulated Silica Nanoparticles Reinforced Conductive Hydrogels with High Elasticity and Self-Adhesion for Strain Sensors. Chem Mater . [DOI: 10.1021/acs.chemmater.2c00934] [Reference Citation Analysis]
39 Stuart T, Hanna J, Gutruf P. Wearable devices for continuous monitoring of biosignals: Challenges and opportunities. APL Bioengineering 2022;6:021502. [DOI: 10.1063/5.0086935] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
40 Herbert R, Lim HR, Rigo B, Yeo WH. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci Adv 2022;8:eabm1175. [PMID: 35544557 DOI: 10.1126/sciadv.abm1175] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Yin L, Wang Y, Zhan J, Bai Y, Hou C, Wu J, Huang R, Wang Y, Huang Y. Chest-scale self-compensated epidermal electronics for standard 6-precordial-lead ECG. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00159-7] [Reference Citation Analysis]
42 Gao Q, Tran T, Liao X, Rosenfeldt S, Gao C, Hou H, Retsch M, Agarwal S, Greiner A. Ultralight Heat-Insulating, Electrically Conductive Carbon Fibrous Sponges for Wearable Mechanosensing Devices with Advanced Warming Function. ACS Appl Mater Interfaces 2022;14:19918-27. [PMID: 35452237 DOI: 10.1021/acsami.2c04136] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
43 Su Y, Zhao J, Zhan W, Yuan H, Wu L, Sui G, Zhang H. A multifunctional hydrogel fabricated via ultra-fast polymerization by graphene oxide-adsorbed liquid metal nanodroplets. Chemical Engineering Journal 2022;435:135018. [DOI: 10.1016/j.cej.2022.135018] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Chen S, Wu Z, Chu C, Ni Y, Neisiany RE, You Z. Biodegradable Elastomers and Gels for Elastic Electronics. Adv Sci (Weinh) 2022;9:e2105146. [PMID: 35212474 DOI: 10.1002/advs.202105146] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
45 Park KT, Cho YS, Jeong I, Jang D, Cho H, Choi Y, Lee T, Ko Y, Choi J, Hong SY, Oh M, Chung S, Park CR, Kim H. Highly Integrated, Wearable Carbon‐Nanotube‐Yarn‐Based Thermoelectric Generators Achieved by Selective Inkjet‐Printed Chemical Doping. Advanced Energy Materials. [DOI: 10.1002/aenm.202200256] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Cui T, Li D, Huang X, Yan A, Dong Y, Xu J, Guo Y, Wang Y, Chen Z, Shao W, Tang Z, Tian H, Yang Y, Ren T. Graphene-Based Flexible Electrode for Electrocardiogram Signal Monitoring. Applied Sciences 2022;12:4526. [DOI: 10.3390/app12094526] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Sun P, Zhang J, Zhu X, Li H, Li Y, Yang J, Peng Z, Zhang G, Wang F, Lan H. Directly Printed Interconnection Wires between Layers for 3D Integrated Stretchable Electronics. Adv Materials Technologies. [DOI: 10.1002/admt.202200302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Wang X, Liu Y, Cheng H, Ouyang X. Surface Wettability for Skin‐Interfaced Sensors and Devices. Adv Funct Materials. [DOI: 10.1002/adfm.202200260] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
49 So S, Park S, Park S, Gwak G, Lyu S. Additive-Manufactured Flexible Triboelectric Sensor Based on Porous PDMS Sponge for Highly Detecting Joint Movements. Int J of Precis Eng and Manuf -Green Tech . [DOI: 10.1007/s40684-022-00432-0] [Reference Citation Analysis]
50 Li X, Liu Z, Liang Y, Wang LM, Liu YD. Chitosan-based double cross-linked ionic hydrogels as a strain and pressure sensor with broad strain-range and high sensitivity. J Mater Chem B 2022. [PMID: 35403658 DOI: 10.1039/d2tb00329e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Xu Z, Yang D, Yuan X, Hua S, You H, Xing Y, Hu K, Wang J, Xiao Y, Yan Y, Tang X. Objective evaluation of wearable thermoelectric generator: From platform building to performance verification. Review of Scientific Instruments 2022;93:045105. [DOI: 10.1063/5.0087672] [Reference Citation Analysis]
52 Kim T, Park I. Skin-interfaced Wearable Biosensors: A Mini-Review. KSS 2022;31:71-8. [DOI: 10.46670/jsst.2022.31.2.71] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
53 Pan K, Liu C, Zhu Z, Feng T, Tao S, Yang B. Soft-Hard Segment Combined Carbonized Polymer Dots for Flexible Optical Film with Superhigh Surface Hardness. ACS Appl Mater Interfaces 2022;14:14504-12. [PMID: 35290026 DOI: 10.1021/acsami.2c00702] [Reference Citation Analysis]
54 Duan Q, Zhang T, Liu C, Yuan R, Li G, Jun Tiw P, Yang K, Ge C, Yang Y, Huang R. Artificial Multisensory Neurons with Fused Haptic and Temperature Perception for Multimodal In‐Sensor Computing. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202200039] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
55 Wei Y, Qian Y, Zhu P, Xiang L, Lei C, Qiu G, Wang C, Liu Y, Liu Y, Chen G. Nanocellulose-templated carbon nanotube enhanced conductive organohydrogel for highly-sensitive strain and temperature sensors. Cellulose. [DOI: 10.1007/s10570-022-04516-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
56 Lin M, Hu H, Zhou S, Xu S. Soft wearable devices for deep-tissue sensing. Nat Rev Mater. [DOI: 10.1038/s41578-022-00427-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
57 Oh J, Jang SG, Moon S, Kim J, Park HK, Kim HS, Park SM, Jeong U. Air-Permeable Waterproofing Electrocardiogram Patch to Monitor Full-Day Activities for Multiple Days. Adv Healthc Mater 2022;:e2102703. [PMID: 35285162 DOI: 10.1002/adhm.202102703] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Yang W, Xin K, Yang J, Xu Q, Shan C, Wei Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. Small Methods 2022;:e2101348. [PMID: 35277948 DOI: 10.1002/smtd.202101348] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
59 Liu M, Zhang Y, Tao TH. Recent Progress in Bio‐Integrated Intelligent Sensing System. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202100280] [Reference Citation Analysis]
60 Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring. Adv Mater 2022;:e2109055. [PMID: 35258117 DOI: 10.1002/adma.202109055] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
61 Kwon K, Kwon S, Yeo WH. Automatic and Accurate Sleep Stage Classification via a Convolutional Deep Neural Network and Nanomembrane Electrodes. Biosensors (Basel) 2022;12:155. [PMID: 35323425 DOI: 10.3390/bios12030155] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Shin YE, Park YJ, Ghosh SK, Lee Y, Park J, Ko H. Ultrasensitive Multimodal Tactile Sensors with Skin-Inspired Microstructures through Localized Ferroelectric Polarization. Adv Sci (Weinh) 2022;9:e2105423. [PMID: 35072354 DOI: 10.1002/advs.202105423] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
63 Choi W, Heo D, Kim T, Jung S, Choi M, Heo J, Kwon JS, Kim BS, Lee W, Koh WG, Cho JH, Lee S, Hong J. Stress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics. Adv Sci (Weinh) 2022;9:e2105420. [PMID: 35001517 DOI: 10.1002/advs.202105420] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
64 Xu B, Li M, Li M, Fang H, Wang Y, Sun X, Guo Q, Wang Z, Liu Y, Chen D. Radio Frequency Resonator-Based Flexible Wireless Pressure Sensor with MWCNT-PDMS Bilayer Microstructure. Micromachines 2022;13:404. [DOI: 10.3390/mi13030404] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Sun J, Zhao E, Liang J, Li H, Zhao S, Wang G, Gu X, Tang BZ. Diradical-Featured Organic Small-Molecule Photothermal Material with High-Spin State in Dimers for Ultra-Broadband Solar Energy Harvesting. Adv Mater 2022;34:e2108048. [PMID: 34882850 DOI: 10.1002/adma.202108048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
66 Guo Q, Qiu X, Zhang X. Recent Advances in Electronic Skins with Multiple-Stimuli-Responsive and Self-Healing Abilities. Materials (Basel) 2022;15:1661. [PMID: 35268894 DOI: 10.3390/ma15051661] [Reference Citation Analysis]
67 Li Y, Cui B, Zhang S, Li B, Li J, Liu S, Zhao Q. Ion-Selective Organic Electrochemical Transistors: Recent Progress and Challenges. Small 2022;:e2107413. [PMID: 35182018 DOI: 10.1002/smll.202107413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
68 Park J, Lee Y, Kim TY, Hwang S, Seo J. Functional Bioelectronic Materials for Long-Term Biocompatibility and Functionality. ACS Appl Electron Mater 2022;4:1449-68. [DOI: 10.1021/acsaelm.1c01212] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
69 Chen K, Wang F, Hu Y, Liu M, Liu P, Yu Y, Feng Q, Xiao X. Highly Stretchable, Sensitive, and Durable Ag/Tannic Acid@Graphene Oxide-Composite Hydrogel for Wearable Strain Sensors. ACS Appl Polym Mater 2022;4:2036-46. [DOI: 10.1021/acsapm.1c01880] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Xu W, Ao H, Zhou N, Song Z, Jiang H. Analysis of Output Performance of a Novel Symmetrical T-Shaped Trapezoidal Micro Piezoelectric Energy Harvester Using a PZT-5H. Micromachines 2022;13:282. [DOI: 10.3390/mi13020282] [Reference Citation Analysis]
71 Huang C, Hao Z, Wang Z, Wang H, Zhao X, Pan Y. An Ultraflexible and Transparent Graphene‐Based Wearable Sensor for Biofluid Biomarkers Detection. Adv Materials Technologies 2022;7:2101131. [DOI: 10.1002/admt.202101131] [Reference Citation Analysis]
72 Yamakado T, Saito S. Ratiometric Flapping Force Probe That Works in Polymer Gels. J Am Chem Soc 2022. [PMID: 35108003 DOI: 10.1021/jacs.1c12955] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
73 Chaikittisilp W, Yamauchi Y, Ariga K. Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials? Adv Mater 2022;34:e2107212. [PMID: 34637159 DOI: 10.1002/adma.202107212] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 16.0] [Reference Citation Analysis]
74 Guymon GG, Malakooti MH. Multifunctional liquid metal polymer composites. Journal of Polymer Science. [DOI: 10.1002/pol.20210867] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
75 Huttunen O, Behfar MH, Hiitola‐keinänen J, Hiltunen J. Electronic Tattoo with Transferable Printed Electrodes and Interconnects for Wireless Electrophysiology Monitoring. Adv Materials Technologies. [DOI: 10.1002/admt.202101496] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Ngai JHL, Polena J, Afzal D, Gao X, Kapadia M, Li Y. Green Solvent‐Processed Hemi‐Isoindigo Polymers for Stable Temperature Sensors. Adv Funct Materials 2022;32:2110995. [DOI: 10.1002/adfm.202110995] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
77 Li M, Yang Y, Yue C, Song Y, Manzo M, Huang Z, Cai L. Stretchable, sensitive, and environment-tolerant ionic conductive organohydrogel reinforced with cellulose nanofibers for human motion monitoring. Cellulose. [DOI: 10.1007/s10570-022-04418-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
78 Lin J, Newquist CA, Harnett CK. Multitouch Pressure Sensing With Soft Optical Time-of-Flight Sensors. IEEE Trans Instrum Meas 2022;71:1-8. [DOI: 10.1109/tim.2022.3141159] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
79 Wang Y, Hao B, Wang Y, Wei Y, Huang X, Shi B. Soft while strong mechanical shock tolerable e-skins. J Mater Chem A 2022;10:8186-94. [DOI: 10.1039/d1ta10746a] [Reference Citation Analysis]
80 Ye T, Wang J, Jiao Y, Li L, He E, Wang L, Li Y, Yun Y, Li D, Lu J, Chen H, Li Q, Li F, Gao R, Peng H, Zhang Y. A Tissue-Like Soft All-Hydrogel Battery. Adv Mater 2022;34:e2105120. [PMID: 34713511 DOI: 10.1002/adma.202105120] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
81 Zan G, Wu T, Zhang Z, Li J, Zhou J, Zhu F, Chen H, Wen M, Yang X, Peng X, Chen J, Wu Q. Bioinspired Nanocomposites with Self-Adaptive Stress Dispersion for Super-Foldable Electrodes. Adv Sci (Weinh) 2022;9:e2103714. [PMID: 34791832 DOI: 10.1002/advs.202103714] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
82 Hu R, Ji G, Zhao J, Gu X, Zhou L, Zheng J. The preparation of dual cross-linked high strain composite gel with manifold excellent properties and its application as a strain sensor. Composites Science and Technology 2022;217:109110. [DOI: 10.1016/j.compscitech.2021.109110] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
83 Wang Y, Wang G, Li X, Yin J, Zhu J. Research Progress of Flexible Piezoresistive Sensors Prepared by Solution-Based Processing. Acta Chimica Sinica 2022;80:214. [DOI: 10.6023/a21080414] [Reference Citation Analysis]
84 Yin L, Kim KN, Trifonov A, Podhajny T, Wang J. Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy Environ Sci 2022;15:82-101. [DOI: 10.1039/d1ee03113a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
85 An Z, Huang L, Zhao J, Hu Q, Sun Z, Zheng H, Zhang X; Laboratory of Low Frequency Electromagnetic Communication Technology, 722 Research Institute, China State Shipbuilding Corporation Limited, Wuhan 430205, China, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China. . Acta Phys Sin 2022;71:027701. [DOI: 10.7498/aps.71.20211609] [Reference Citation Analysis]
86 Xu C, Liu P, Feng C, He Z, Cao Y. Organic photodetectors with high detectivity for broadband detection covering UV-vis-NIR. J Mater Chem C 2022;10:5787-96. [DOI: 10.1039/d2tc00525e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
87 Khan AN, Cha Y, Giddens H, Hao Y. Recent advances in organ specific wireless bioelectronic devices: Perspective on biotelemetry and power transfer using antenna systems. Engineering 2022. [DOI: 10.1016/j.eng.2021.10.019] [Reference Citation Analysis]
88 Yang J, Ju S. Washable and stretchable fiber with heat and ultraviolet color conversion. RSC Adv 2022;12:22351-9. [DOI: 10.1039/d2ra03948f] [Reference Citation Analysis]
89 Dai C, Chen H, Wang L, Liu Y, Yin Q, Jiang J, Zhou Q, Weng G. A highly temperature- and pressure-sensitive soft sensor self-powered by a galvanic cell design. J Mater Chem A 2022;10:4408-17. [DOI: 10.1039/d1ta10097a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Song L, Chen J, Xu BB, Huang Y. Flexible Plasmonic Biosensors for Healthcare Monitoring: Progress and Prospects. ACS Nano 2021;15:18822-47. [PMID: 34841852 DOI: 10.1021/acsnano.1c07176] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
91 Wang Q, Zhang Q, Wang G, Wang Y, Ren X, Gao G. Muscle-Inspired Anisotropic Hydrogel Strain Sensors. ACS Appl Mater Interfaces 2021. [PMID: 34958540 DOI: 10.1021/acsami.1c18758] [Reference Citation Analysis]
92 Garcia L, Kerns G, O'Reilley K, Okesanjo O, Lozano J, Narendran J, Broeking C, Ma X, Thompson H, Njapa Njeuha P, Sikligar D, Brockstein R, Golecki HM. The Role of Soft Robotic Micromachines in the Future of Medical Devices and Personalized Medicine. Micromachines (Basel) 2021;13:28. [PMID: 35056193 DOI: 10.3390/mi13010028] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
93 Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic Textiles for Wearable Point-of-Care Systems. Chem Rev 2021. [PMID: 34939791 DOI: 10.1021/acs.chemrev.1c00502] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Wang Y, Hu S, Xiong T, Huang Y, Qiu L. Recent progress in aircraft smart skin for structural health monitoring. Structural Health Monitoring. [DOI: 10.1177/14759217211056831] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
95 Shi X, Das P, Wu Z. Digital Microscale Electrochemical Energy Storage Devices for a Fully Connected and Intelligent World. ACS Energy Lett 2022;7:267-81. [DOI: 10.1021/acsenergylett.1c01854] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
96 Kim H, Pyun KR, Lee M, Lee HB, Ko SH. Recent Advances in Sustainable Wearable Energy Devices with Nanoscale Materials and Macroscale Structures. Adv Funct Materials 2022;32:2110535. [DOI: 10.1002/adfm.202110535] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
97 Marunchenko AA, Baranov MA, Ushakova EV, Ryabov DR, Pushkarev AP, Gets DS, Nasibulin AG, Makarov SV. Single‐Walled Carbon Nanotube Thin Film for Flexible and Highly Responsive Perovskite Photodetector. Adv Funct Materials 2022;32:2109834. [DOI: 10.1002/adfm.202109834] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
98 Escobedo P, Bhattacharjee M, Nikbakhtnasrabadi F, Dahiya R. Flexible Strain and Temperature Sensing NFC Tag for Smart Food Packaging Applications. IEEE Sensors J 2021;21:26406-14. [DOI: 10.1109/jsen.2021.3100876] [Cited by in Crossref: 11] [Cited by in F6Publishing: 3] [Article Influence: 11.0] [Reference Citation Analysis]
99 Huang T, Lin L, Hong S. Decoration of TiO2 nanoparticles on TiO2 microcone array with holes as photoanodes of fiber-shaped dye-sensitized solar cells. Materials Science in Semiconductor Processing 2021;136:106152. [DOI: 10.1016/j.mssp.2021.106152] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Zhang J, Chen B, Chen X, Hou X. Liquid-Based Adaptive Structural Materials. Adv Mater 2021;33:e2005664. [PMID: 33834566 DOI: 10.1002/adma.202005664] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 15.0] [Reference Citation Analysis]
101 Zhang Y, Zheng S, Zhou F, Shi X, Dong C, Das P, Ma J, Wang K, Wu ZS. Multi-Layer Printable Lithium Ion Micro-Batteries with Remarkable Areal Energy Density and Flexibility for Wearable Smart Electronics. Small 2021;:e2104506. [PMID: 34837671 DOI: 10.1002/smll.202104506] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
102 Li WD, Ke K, Jia J, Pu JH, Zhao X, Bao RY, Liu ZY, Bai L, Zhang K, Yang MB, Yang W. Recent Advances in Multiresponsive Flexible Sensors towards E-skin: A Delicate Design for Versatile Sensing. Small 2021;:e2103734. [PMID: 34825473 DOI: 10.1002/smll.202103734] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
103 Matsuda T, Kawakami R, Nakajima T, Hane Y, Gong JP. Revisiting the Origins of the Fracture Energy of Tough Double-Network Hydrogels with Quantitative Mechanochemical Characterization of the Damage Zone. Macromolecules 2021;54:10331-9. [DOI: 10.1021/acs.macromol.1c01214] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
104 Pan M, Yuan C, Liang X, Dong T, Liu T, Zhang J, Zou J, Yang H, Bowen C. Soft Actuators and Robotic Devices for Rehabilitation and Assistance. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202100140] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
105 Wang Y, Wang J, Ma Z, Yan L. A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation. ACS Appl Mater Interfaces 2021;13:54409-16. [PMID: 34743515 DOI: 10.1021/acsami.1c17442] [Reference Citation Analysis]
106 Kim J, Jung H, Kim M, Bae H, Lee Y. Conductive Polymer Composites for Soft Tactile Sensors. Macromol Res 2021;29:761-75. [DOI: 10.1007/s13233-021-9092-6] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
107 Feng Q, Wan K, Zhang C, Liu T. Cryo‐spun encapsulation of polyaniline‐based conducting hydrogels with high sensitivity, wide‐range linearity, and environmental stability for fibrous strain sensors. Journal of Polymer Science. [DOI: 10.1002/pol.20210766] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Unger K, Greco F, Coclite AM. Temporary Tattoo pH Sensor with pH‐Responsive Hydrogel via Initiated Chemical Vapor Deposition. Adv Materials Technologies 2022;7:2100717. [DOI: 10.1002/admt.202100717] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
109 Basodan RAM, Park B, Chung H. Smart personal protective equipment (PPE): current PPE needs, opportunities for nanotechnology and e-textiles. Flex Print Electron 2021;6:043004. [DOI: 10.1088/2058-8585/ac32a9] [Reference Citation Analysis]
110 Wei Y, Xiang L, Zhu P, Qian Y, Zhao B, Chen G. Multifunctional Organohydrogel-Based Ionic Skin for Capacitance and Temperature Sensing toward Intelligent Skin-like Devices. Chem Mater 2021;33:8623-34. [DOI: 10.1021/acs.chemmater.1c01904] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
111 Hassan M, Abbas G, Li N, Afzal A, Haider Z, Ahmed S, Xu X, Pan C, Peng Z. Significance of Flexible Substrates for Wearable and Implantable Devices: Recent Advances and Perspectives. Adv Materials Technologies 2022;7:2100773. [DOI: 10.1002/admt.202100773] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
112 Kim J, Lee Y, Kang M, Hu L, Zhao S, Ahn JH. 2D Materials for Skin-Mountable Electronic Devices. Adv Mater 2021;33:e2005858. [PMID: 33998064 DOI: 10.1002/adma.202005858] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
113 Zhao L, Yu S, Li J, Song Z, Wu M, Wang X, Wang X. Biomimetic-inspired highly sensitive flexible capacitive pressure sensor with high-aspect-ratio microstructures. Current Applied Physics 2021;31:29-37. [DOI: 10.1016/j.cap.2021.07.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
114 Chen F, Huang Q, Zheng Z. Permeable Conductors for Wearable and On‐Skin Electronics. Small Structures 2022;3:2100135. [DOI: 10.1002/sstr.202100135] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
115 Li G, Hao J, Li W, Ma F, Ma T, Gao W, Yu Y, Wen D. Integrating Highly Porous and Flexible Au Hydrogels with Soft-MEMS Technologies for High-Performance Wearable Biosensing. Anal Chem 2021;93:14068-75. [PMID: 34636245 DOI: 10.1021/acs.analchem.1c01581] [Reference Citation Analysis]
116 Goldoni R, Scolaro A, Boccalari E, Dolci C, Scarano A, Inchingolo F, Ravazzani P, Muti P, Tartaglia G. Malignancies and Biosensors: A Focus on Oral Cancer Detection through Salivary Biomarkers. Biosensors (Basel) 2021;11:396. [PMID: 34677352 DOI: 10.3390/bios11100396] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
117 Zhou Z, Chen N, Zhong H, Zhang W, Zhang Y, Yin X, He B. Textile-Based Mechanical Sensors: A Review. Materials (Basel) 2021;14:6073. [PMID: 34683661 DOI: 10.3390/ma14206073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
118 El-Ghazali S, Kobayashi H, Khatri M, Phan DN, Khatri Z, Mahar SK, Kobayashi S, Kim IS. Preparation of a Cage-Type Polyglycolic Acid/Collagen Nanofiber Blend with Improved Surface Wettability and Handling Properties for Potential Biomedical Applications. Polymers (Basel) 2021;13:3458. [PMID: 34685218 DOI: 10.3390/polym13203458] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
119 Erdem Ö, Derin E, Zeibi Shirejini S, Sagdic K, Yilmaz EG, Yildiz S, Akceoglu GA, Inci F. Carbon‐Based Nanomaterials and Sensing Tools for Wearable Health Monitoring Devices. Adv Materials Technologies 2022;7:2100572. [DOI: 10.1002/admt.202100572] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
120 Zhang F, Ma PC, Wang J, Zhang Q, Feng W, Zhu Y, Zheng Q. Anisotropic conductive networks for multidimensional sensing. Mater Horiz 2021;8:2615-53. [PMID: 34617540 DOI: 10.1039/d1mh00615k] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
121 Moon D, Bag A, Lee H, Meeseepong M, Lee D, Lee N. A stretchable, room-temperature operable, chemiresistive gas sensor using nanohybrids of reduced graphene oxide and zinc oxide nanorods. Sensors and Actuators B: Chemical 2021;345:130373. [DOI: 10.1016/j.snb.2021.130373] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
122 Mahmood M, Kwon S, Kim H, Kim YS, Siriaraya P, Choi J, Otkhmezuri B, Kang K, Yu KJ, Jang YC, Ang CS, Yeo WH. Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery-Based Brain-Machine Interfaces. Adv Sci (Weinh) 2021;8:e2101129. [PMID: 34272934 DOI: 10.1002/advs.202101129] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 12.0] [Reference Citation Analysis]
123 Vallem V, Roosa E, Ledinh T, Jung W, Kim TI, Rashid-Nadimi S, Kiani A, Dickey MD. A Soft Variable-Area Electrical-Double-Layer Energy Harvester. Adv Mater 2021;33:e2103142. [PMID: 34462971 DOI: 10.1002/adma.202103142] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
124 Gao S, He T, Zhang Z, Ao H, Jiang H, Lee C. A Motion Capturing and Energy Harvesting Hybridized Lower-Limb System for Rehabilitation and Sports Applications. Adv Sci (Weinh) 2021;8:e2101834. [PMID: 34414697 DOI: 10.1002/advs.202101834] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 18.0] [Reference Citation Analysis]
125 Wang Z, Zhang X, Cao T, Wang T, Sun L, Wang K, Fan X. Antiliquid-Interfering, Antibacteria, and Adhesive Wearable Strain Sensor Based on Superhydrophobic and Conductive Composite Hydrogel. ACS Appl Mater Interfaces 2021;13:46022-32. [PMID: 34542266 DOI: 10.1021/acsami.1c15052] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Sun X, Liang Y, Ye L, Liang H. An extremely tough and ionic conductive natural-polymer-based double network hydrogel. J Mater Chem B 2021;9:7751-9. [PMID: 34586150 DOI: 10.1039/d1tb01458g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
127 Zhao R, Xu X, Hu L. Highly Strong, Stretchable, and Conductive Reduced Graphene Oxide Composite Hydrogel-Based Sensors for Motoring Strain and Pressure. ACS Appl Polym Mater 2021;3:5155-61. [DOI: 10.1021/acsapm.1c00898] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
128 Zhang W, Liu Q, Chao S, Liu R, Cui X, Sun Y, Ouyang H, Li Z. Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material. ACS Appl Mater Interfaces 2021;13:42966-76. [PMID: 34473476 DOI: 10.1021/acsami.1c13840] [Reference Citation Analysis]
129 Zhang X, Hu J, Yang Q, Yang H, Yang H, Li Q, Li X, Hu C, Xi Y, Wang ZL. Harvesting Multidirectional Breeze Energy and Self‐Powered Intelligent Fire Detection Systems Based on Triboelectric Nanogenerator and Fluid‐Dynamic Modeling. Adv Funct Mater 2021;31:2106527. [DOI: 10.1002/adfm.202106527] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
130 Luo H, Pang G, Xu K, Ye Z, Yang H, Yang G. A Fully Printed Flexible Sensor Sheet for Simultaneous Proximity–Pressure–Temperature Detection. Adv Materials Technologies 2021;6:2100616. [DOI: 10.1002/admt.202100616] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
131 Liu Y, Shang S, Mo S, Wang P, Yin B, Wei J. Soft actuators built from cellulose paper: A review on actuation, material, fabrication, and applications. Journal of Science: Advanced Materials and Devices 2021;6:321-37. [DOI: 10.1016/j.jsamd.2021.06.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
132 Zhao J, Ji G, Li Y, Hu R, Zheng J. Preparation of a self-healing polyaniline-based gel and its application as a healable all-in-one capacitor. Chemical Engineering Journal 2021;420:129790. [DOI: 10.1016/j.cej.2021.129790] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
133 Herbert R, Lim HR, Park S, Kim JH, Yeo WH. Recent Advances in Printing Technologies of Nanomaterials for Implantable Wireless Systems in Health Monitoring and Diagnosis. Adv Healthc Mater 2021;10:e2100158. [PMID: 34019731 DOI: 10.1002/adhm.202100158] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
134 Guo X, Zhao Y, Xu X, Chen D, Zhang X, Yang G, Qiao W, Feng R, Zhang X, Wu J, Duan Z, Zhang H, Huang L, Xu C, Qu L. Biomimetic flexible strain sensor with high linearity using double conducting layers. Composites Science and Technology 2021;213:108908. [DOI: 10.1016/j.compscitech.2021.108908] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
135 Manjakkal L, Yin L, Nathan A, Wang J, Dahiya R. Energy Autonomous Sweat-Based Wearable Systems. Adv Mater 2021;33:e2100899. [PMID: 34247412 DOI: 10.1002/adma.202100899] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 21.0] [Reference Citation Analysis]
136 Guo X, Avila R, Huang Y, Xie Z. Flexible electronics with dynamic interfaces for biomedical monitoring, stimulation, and characterization. Int Journal of Mech Sys Dyn 2021;1:52-70. [DOI: 10.1002/msd2.12017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
137 Zhang E, Galle L, Lochmann S, Grothe J, Kaskel S. Nanoporous carbon architectures for iontronics: Ion-based computing, logic circuits and biointerfacing. Chemical Engineering Journal 2021;420:130431. [DOI: 10.1016/j.cej.2021.130431] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
138 Yu T, Zhang D, Wu Y, Guo S, Lei F, Li Y, Yang J. Graphene foam pressure sensor based on fractal electrode with high sensitivity and wide linear range. Carbon 2021;182:497-505. [DOI: 10.1016/j.carbon.2021.06.049] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 10.0] [Reference Citation Analysis]
139 Kim H, Kwon YT, Zhu C, Wu F, Kwon S, Yeo WH, Choo HJ. Real-Time Functional Assay of Volumetric Muscle Loss Injured Mouse Masseter Muscles via Nanomembrane Electronics. Adv Sci (Weinh) 2021;8:e2101037. [PMID: 34218527 DOI: 10.1002/advs.202101037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
140 Li J, Wu T, Jiang H, Chen Y, Yang Q. Ultrasensitive Hierarchical Piezoresistive Pressure Sensor for Wide‐Range Pressure Detection. Advanced Intelligent Systems 2021;3:2100070. [DOI: 10.1002/aisy.202100070] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
141 Han WC, Sim GW, Kim YB, Kim DS. Reversible Curvature Reversal of Monolithic Liquid Crystal Elastomer Film and Its Smart Valve Application. Macromol Rapid Commun 2021;42:e2100404. [PMID: 34418205 DOI: 10.1002/marc.202100404] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
142 Wang H, Zhang Y, Liang X, Zhang Y. Smart Fibers and Textiles for Personal Health Management. ACS Nano 2021. [PMID: 34398600 DOI: 10.1021/acsnano.1c06230] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 26.0] [Reference Citation Analysis]
143 Feng Y, Liu H, Zhu W, Guan L, Yang X, Zvyagin AV, Zhao Y, Shen C, Yang B, Lin Q. Muscle‐Inspired MXene Conductive Hydrogels with Anisotropy and Low‐Temperature Tolerance for Wearable Flexible Sensors and Arrays. Adv Funct Materials 2021;31:2105264. [DOI: 10.1002/adfm.202105264] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 23.0] [Reference Citation Analysis]
144 Chen K, Hu Y, Liu M, Wang F, Liu P, Yu Y, Feng Q, Xiao X. Highly Stretchable, Tough, and Conductive Ag@Cu Nanocomposite Hydrogels for Flexible Wearable Sensors and Bionic Electronic Skins. Macromol Mater Eng 2021;306:2100341. [DOI: 10.1002/mame.202100341] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
145 Lin J, Fu R, Zhong X, Yu P, Tan G, Li W, Zhang H, Li Y, Zhou L, Ning C. Wearable sensors and devices for real-time cardiovascular disease monitoring. Cell Reports Physical Science 2021;2:100541. [DOI: 10.1016/j.xcrp.2021.100541] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
146 Purschke DN, Pielmeier MRP, Üzer E, Ott C, Jensen C, Degg A, Vogel A, Amer N, Nilges T, Hegmann FA. Ultrafast Photoconductivity and Terahertz Vibrational Dynamics in Double-Helix SnIP Nanowires. Adv Mater 2021;33:e2100978. [PMID: 34278600 DOI: 10.1002/adma.202100978] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
147 Wei Y, Jiang S, Li X, Li J, Dong Y, Shi SQ, Li J, Fang Z. "Green" Flexible Electronics: Biodegradable and Mechanically Strong Soy Protein-Based Nanocomposite Films for Human Motion Monitoring. ACS Appl Mater Interfaces 2021;13:37617-27. [PMID: 34313436 DOI: 10.1021/acsami.1c09209] [Reference Citation Analysis]
148 Ren S, Xu JL, Cheng L, Gao X, Wang SD. Amine-Assisted Delaminated 2D Ti3C2Tx MXenes for High Specific Capacitance in Neutral Aqueous Electrolytes. ACS Appl Mater Interfaces 2021;13:35878-88. [PMID: 34297521 DOI: 10.1021/acsami.1c06161] [Reference Citation Analysis]
149 De Fazio R, De Vittorio M, Visconti P. Innovative IoT Solutions and Wearable Sensing Systems for Monitoring Human Biophysical Parameters: A Review. Electronics 2021;10:1660. [DOI: 10.3390/electronics10141660] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
150 Zhou K, Chigan D, Xu L, Liu C, Ding R, Li G, Zhang Z, Pei D, Li A, Guo B, Yan X, He G. Anti-Sandwich Structured Photo-Electronic Wound Dressing for Highly Efficient Bacterial Infection Therapy. Small 2021;17:e2101858. [PMID: 34250738 DOI: 10.1002/smll.202101858] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
151 Ji B, Zhou Q, Hu B, Zhong J, Zhou J, Zhou B. Bio-Inspired Hybrid Dielectric for Capacitive and Triboelectric Tactile Sensors with High Sensitivity and Ultrawide Linearity Range. Adv Mater 2021;33:e2100859. [PMID: 34062019 DOI: 10.1002/adma.202100859] [Cited by in Crossref: 25] [Cited by in F6Publishing: 35] [Article Influence: 25.0] [Reference Citation Analysis]
152 Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. Adv Mater 2021;33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Cited by in Crossref: 86] [Cited by in F6Publishing: 102] [Article Influence: 86.0] [Reference Citation Analysis]
153 Duan S, Wang B, Lin Y, Li Y, Zhu D, Wu J, Xia J, Lei W, Wang B. Waterproof Mechanically Robust Multifunctional Conformal Sensors for Underwater Interactive Human–Machine Interfaces. Advanced Intelligent Systems 2021;3:2100056. [DOI: 10.1002/aisy.202100056] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
154 Ergene E, Liman G, Yildiz E, Yilgor Huri P, Demirel G. Folding Control of Hydrogel Platforms through Pattern Design and Light Illumination. ACS Appl Polym Mater 2021;3:3272-7. [DOI: 10.1021/acsapm.1c00458] [Reference Citation Analysis]
155 Rodeheaver N, Herbert R, Kim Y, Mahmood M, Kim H, Jeong J, Yeo W. Strain‐Isolating Materials and Interfacial Physics for Soft Wearable Bioelectronics and Wireless, Motion Artifact‐Controlled Health Monitoring. Adv Funct Mater 2021;31:2104070. [DOI: 10.1002/adfm.202104070] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
156 Chao M, He L, Gong M, Li N, Li X, Peng L, Shi F, Zhang L, Wan P. Breathable Ti3C2Tx MXene/Protein Nanocomposites for Ultrasensitive Medical Pressure Sensor with Degradability in Solvents. ACS Nano 2021;15:9746-58. [PMID: 34080827 DOI: 10.1021/acsnano.1c00472] [Cited by in Crossref: 46] [Cited by in F6Publishing: 28] [Article Influence: 46.0] [Reference Citation Analysis]
157 Karolina Pierchala M, Kadumudi FB, Mehrali M, Zsurzsan TG, Kempen PJ, Serdeczny MP, Spangenberg J, Andresen TL, Dolatshahi-Pirouz A. Soft Electronic Materials with Combinatorial Properties Generated via Mussel-Inspired Chemistry and Halloysite Nanotube Reinforcement. ACS Nano 2021;15:9531-49. [PMID: 33983022 DOI: 10.1021/acsnano.0c09204] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
158 Nguyen Ba D, Zheng Y, Becerra L, Marangolo M, Almanza M, Lobue M. Magnetocaloric Effect in Flexible, Free-Standing Gadolinium Thick Films for Energy Conversion Applications. Phys Rev Applied 2021;15. [DOI: 10.1103/physrevapplied.15.064045] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
159 Liu X, Wei Y, Qiu Y. Advanced Flexible Skin-Like Pressure and Strain Sensors for Human Health Monitoring. Micromachines (Basel) 2021;12:695. [PMID: 34198673 DOI: 10.3390/mi12060695] [Cited by in F6Publishing: 13] [Reference Citation Analysis]
160 Duan S, Lin Y, Wang Z, Tang J, Li Y, Zhu D, Wu J, Tao L, Choi CH, Sun L, Xia J, Wei L, Wang B. Conductive Porous MXene for Bionic, Wearable, and Precise Gesture Motion Sensors. Research (Wash D C) 2021;2021:9861467. [PMID: 34223178 DOI: 10.34133/2021/9861467] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
161 Meng X, Yang J, Liu W, Ramakrishna S, Sun Y, Dai Y. Stimulus-Responsive Graphene with Periodical Wrinkles on Grooved Microfiber Arrays: Simulation, Programmable Shape-Shifting, and Catalytic Applications. ACS Appl Mater Interfaces 2021;13:26561-72. [PMID: 34038638 DOI: 10.1021/acsami.1c03443] [Reference Citation Analysis]
162 Wang HS, Im TH, Kim YB, Sung SH, Min S, Park SH, Lee HE, Jeong CK, Park JH, Lee KJ. Flash-welded ultraflat silver nanowire network for flexible organic light-emitting diode and triboelectric tactile sensor. APL Materials 2021;9:061112. [DOI: 10.1063/5.0051431] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
163 Lv Z, Huang X, Fan D, Zhou P, Luo Y, Zhang X. Scalable manufacturing of conductive rubber nanocomposites with ultralow percolation threshold for strain sensing applications. Composites Communications 2021;25:100685. [DOI: 10.1016/j.coco.2021.100685] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
164 Li X, Cao J, Li H, Yu P, Fan Y, Xiao Y, Yin Y, Zhao X, Wang ZL, Zhu G. Differentiation of Multiple Mechanical Stimuli by a Flexible Sensor Using a Dual-Interdigital-Electrode Layout for Bodily Kinesthetic Identification. ACS Appl Mater Interfaces 2021;13:26394-403. [PMID: 34032400 DOI: 10.1021/acsami.1c05572] [Reference Citation Analysis]
165 Joung KY, Kim SY, Kang I, Cho SH. 3D-Printed Load Cell Using Nanocarbon Composite Strain Sensor. Sensors (Basel) 2021;21:3675. [PMID: 34070613 DOI: 10.3390/s21113675] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
166 Niu Y, Liu H, He R, Luo M, Shu M, Xu F. Environmentally Compatible Wearable Electronics Based on Ionically Conductive Organohydrogels for Health Monitoring with Thermal Compatibility, Anti-Dehydration, and Underwater Adhesion. Small 2021;17:e2101151. [PMID: 34013638 DOI: 10.1002/smll.202101151] [Cited by in F6Publishing: 24] [Reference Citation Analysis]
167 Jin Z, Yang L, Shi S, Wang T, Duan G, Liu X, Li Y. Flexible Polydopamine Bioelectronics. Adv Funct Materials 2021;31:2103391. [DOI: 10.1002/adfm.202103391] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 28.0] [Reference Citation Analysis]
168 Yoo J, Yang J, Chung M, Kim S, Yoon J. A review of geometric and structural design for reliable flexible electronics. J Micromech Microeng 2021;31:074001. [DOI: 10.1088/1361-6439/abfd0a] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
169 Ji D, Kim J. Recent Strategies for Strengthening and Stiffening Tough Hydrogels. Adv NanoBio Res 2021;1:2100026. [DOI: 10.1002/anbr.202100026] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
170 Migliorini L, Piazzoni C, Pohako‐esko K, Di Girolamo M, Vitaloni A, Borghi F, Santaniello T, Aabloo A, Milani P. All‐Printed Green Micro‐Supercapacitors Based on a Natural‐derived Ionic Liquid for Flexible Transient Electronics. Adv Funct Mater 2021;31:2102180. [DOI: 10.1002/adfm.202102180] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
171 Zhang H, Liu D, Lee JH, Chen H, Kim E, Shen X, Zheng Q, Yang J, Kim JK. Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors. Nanomicro Lett 2021;13:122. [PMID: 34138324 DOI: 10.1007/s40820-021-00615-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 20] [Article Influence: 2.0] [Reference Citation Analysis]
172 Arica TA, Isık T, Guner T, Horzum N, Demir MM. Advances in Electrospun Fiber‐Based Flexible Nanogenerators for Wearable Applications. Macromol Mater Eng 2021;306:2100143. [DOI: 10.1002/mame.202100143] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
173 Chen H, Dejace L, Lacour SP. Electronic Skins for Healthcare Monitoring and Smart Prostheses. Annu Rev Control Robot Auton Syst 2021;4:629-50. [DOI: 10.1146/annurev-control-071320-101023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
174 Wang L, Jiang K, Shen G. Wearable, Implantable, and Interventional Medical Devices Based on Smart Electronic Skins. Adv Materials Technologies 2021;6:2100107. [DOI: 10.1002/admt.202100107] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 15.0] [Reference Citation Analysis]
175 Wang M, Luo Y, Wang T, Wan C, Pan L, Pan S, He K, Neo A, Chen X. Artificial Skin Perception. Adv Mater 2021;33:e2003014. [PMID: 32930454 DOI: 10.1002/adma.202003014] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 59.0] [Reference Citation Analysis]
176 Ilami M, Bagheri H, Ahmed R, Skowronek EO, Marvi H. Materials, Actuators, and Sensors for Soft Bioinspired Robots. Adv Mater 2021;33:e2003139. [PMID: 33346386 DOI: 10.1002/adma.202003139] [Cited by in Crossref: 62] [Cited by in F6Publishing: 61] [Article Influence: 62.0] [Reference Citation Analysis]
177 Haroun A, Le X, Gao S, Dong B, He T, Zhang Z, Wen F, Xu S, Lee C. Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications. Nano Ex 2021;2:022005. [DOI: 10.1088/2632-959x/abf3d4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 12.0] [Reference Citation Analysis]
178 Reda A, El-Safty SA, Selim MM, Shenashen MA. Optical glucose biosensor built-in disposable strips and wearable electronic devices. Biosens Bioelectron 2021;185:113237. [PMID: 33932881 DOI: 10.1016/j.bios.2021.113237] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
179 Huang H, Ning X, Zhou M, Sun T, Wu X, Zhang X. A Three-Dimensional Printable Liquid Metal-Like Ag Nanoparticle Ink for Making a Super-Stretchable and Highly Cyclic Durable Strain Sensor. ACS Appl Mater Interfaces 2021;13:18021-32. [DOI: 10.1021/acsami.1c02422] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
180 Zohar O, Khatib M, Omar R, Vishinkin R, Broza YY, Haick H. Biointerfaced sensors for biodiagnostics. VIEW 2021;2:20200172. [DOI: 10.1002/viw.20200172] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
181 Choi Y, Park K, Choi H, Son D, Shin M. Self-Healing, Stretchable, Biocompatible, and Conductive Alginate Hydrogels through Dynamic Covalent Bonds for Implantable Electronics. Polymers (Basel) 2021;13:1133. [PMID: 33918277 DOI: 10.3390/polym13071133] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
182 Ahmadi Z, Lee S, Unocic RR, Shamsaei N, Mahjouri‐samani M. Additive Nanomanufacturing of Multifunctional Materials and Patterned Structures: A Novel Laser‐Based Dry Printing Process. Adv Mater Technol 2021;6:2001260. [DOI: 10.1002/admt.202001260] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
183 Thanh Tung T, Chen SJ, Fumeaux C, Kim T, Losic D. N-doped reduced graphene oxide-PEDOT nanocomposites for implementation of a flexible wideband antenna for wearable wireless communication applications. Nanotechnology 2021;32. [PMID: 33690186 DOI: 10.1088/1361-6528/abed04] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
184 Chen S, Dong Y, Ma S, Ren J, Yang X, Wang Y, Lü S. Superstretching MXene Composite Hydrogel as a Bidirectional Stress Response Thixotropic Sensor. ACS Appl Mater Interfaces 2021;13:13629-36. [PMID: 33689278 DOI: 10.1021/acsami.0c21598] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 7.0] [Reference Citation Analysis]
185 Mandal S, Kumari S, Kumar M, Ojha U. Supplementary Networking of Interpenetrating Polymer System (SNIPSy) Strategy to Develop Strong & High Water Content Ionic Hydrogels for Solid Electrolyte Applications. Adv Funct Materials 2021;31:2100251. [DOI: 10.1002/adfm.202100251] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
186 Crump MR, Bidinger SL, Pavinatto FJ, Gong AT, Sweet RM, Mackenzie JD. Sensorized tissue analogues enabled by a 3D-printed conductive organogel. npj Flex Electron 2021;5. [DOI: 10.1038/s41528-021-00104-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
187 Yoo YJ, Heo S, Kim YJ, Ko JH, Mira ZF, Song YM. Functional photonic structures for external interaction with flexible/wearable devices. Nano Res 2021;14:2904-18. [DOI: 10.1007/s12274-021-3388-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
188 Wang Z, Ma Z, Sun J, Yan Y, Bu M, Huo Y, Li YF, Hu N. Recent Advances in Natural Functional Biopolymers and Their Applications of Electronic Skins and Flexible Strain Sensors. Polymers (Basel) 2021;13:813. [PMID: 33800960 DOI: 10.3390/polym13050813] [Cited by in Crossref: 5] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
189 Liu X, Ma Y, Zhang X, Huang J. Cellulose nanocrystal reinforced conductive nanocomposite hydrogel with fast self-healing and self-adhesive properties for human motion sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;613:126076. [DOI: 10.1016/j.colsurfa.2020.126076] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
190 Byun SH, Kim CS, Agno KC, Lee S, Li Z, Cho BJ, Jeong JW. Design Strategy for Transformative Electronic System toward Rapid, Bidirectional Stiffness Tuning using Graphene and Flexible Thermoelectric Device Interfaces. Adv Mater 2021;33:e2007239. [PMID: 33491832 DOI: 10.1002/adma.202007239] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
191 Jia Z, Gong J, Zeng Y, Ran J, Liu J, Wang K, Xie C, Lu X, Wang J. Bioinspired Conductive Silk Microfiber Integrated Bioelectronic for Diagnosis and Wound Healing in Diabetes. Adv Funct Mater 2021;31:2010461. [DOI: 10.1002/adfm.202010461] [Cited by in Crossref: 43] [Cited by in F6Publishing: 40] [Article Influence: 43.0] [Reference Citation Analysis]
192 Lim HR, Lee SM, Mahmood M, Kwon S, Kim YS, Lee Y, Yeo WH. Development of Flexible Ion-Selective Electrodes for Saliva Sodium Detection. Sensors (Basel) 2021;21:1642. [PMID: 33652955 DOI: 10.3390/s21051642] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
193 Lai PC, Yu SS. Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength. Polymers (Basel) 2021;13:688. [PMID: 33668913 DOI: 10.3390/polym13050688] [Cited by in Crossref: 3] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
194 Zhu K, Guo W, Yang G, Li Z, Wu H. High-Fidelity Recording of EMG Signals by Multichannel On-Skin Electrode Arrays from Target Muscles for Effective Human–Machine Interfaces. ACS Appl Electron Mater 2021;3:1350-8. [DOI: 10.1021/acsaelm.0c01129] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
195 Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano 2021;15:1960-2004. [PMID: 33534541 DOI: 10.1021/acsnano.0c06688] [Cited by in Crossref: 54] [Cited by in F6Publishing: 30] [Article Influence: 54.0] [Reference Citation Analysis]
196 Song Y, Mukasa D, Zhang H, Gao W. Self-Powered Wearable Biosensors. Acc Mater Res 2021;2:184-97. [DOI: 10.1021/accountsmr.1c00002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
197 Bag A, Lee N. Recent Advancements in Development of Wearable Gas Sensors. Adv Materials Technologies 2021;6:2000883. [DOI: 10.1002/admt.202000883] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 26.0] [Reference Citation Analysis]
198 Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules 2021;26:748. [PMID: 33535493 DOI: 10.3390/molecules26030748] [Cited by in Crossref: 7] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
199 Yun SM, Kim M, Kwon YW, Kim H, Kim MJ, Park Y, Park J. Recent Advances in Wearable Devices for Non-Invasive Sensing. Applied Sciences 2021;11:1235. [DOI: 10.3390/app11031235] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
200 Peřinka N, Pozo B, Fernández de Gorostiza E, Mendes-felipe C, Vilas-vilela JL, Lanceros-méndez S. Capacitive and illumination systems based on printed and hybrid electronics. Flex Print Electron 2021;6:015004. [DOI: 10.1088/2058-8585/abd88b] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
201 Han WB, Ko G, Jang T, Hwang S. Materials, Devices, and Applications for Wearable and Implantable Electronics. ACS Appl Electron Mater 2021;3:485-503. [DOI: 10.1021/acsaelm.0c00724] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 13.0] [Reference Citation Analysis]
202 Wang C, Yokota T, Someya T. Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chem Rev 2021;121:2109-46. [DOI: 10.1021/acs.chemrev.0c00897] [Cited by in Crossref: 15] [Cited by in F6Publishing: 5] [Article Influence: 15.0] [Reference Citation Analysis]
203 Jiang P, Klemeš JJ, Fan YV, Fu X, Bee YM. More Is Not Enough: A Deeper Understanding of the COVID-19 Impacts on Healthcare, Energy and Environment Is Crucial. Int J Environ Res Public Health 2021;18:E684. [PMID: 33466940 DOI: 10.3390/ijerph18020684] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 7.0] [Reference Citation Analysis]
204 Huang Q, Yang Y, Chen R, Wang X. High performance fully paper‐based all‐solid‐state supercapacitor fabricated by a papermaking process with silver nanoparticles and reduced graphene oxide‐modified pulp fibers. EcoMat 2021;3. [DOI: 10.1002/eom2.12076] [Cited by in Crossref: 4] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
205 Kim H, Kwon S, Kwon YT, Yeo WH. Soft Wireless Bioelectronics and Differential Electrodermal Activity for Home Sleep Monitoring. Sensors (Basel) 2021;21:E354. [PMID: 33430220 DOI: 10.3390/s21020354] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
206 Koh EH, Lee W, Choi Y, Moon J, Jang J, Park S, Choo J, Kim D, Jung HS. A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection. ACS Appl Mater Interfaces 2021;13:3024-32. [DOI: 10.1021/acsami.0c18892] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
207 Wu S, Shao Z, Xie H, Xiang T, Zhou S. Salt-mediated triple shape-memory ionic conductive polyampholyte hydrogel for wearable flexible electronics. J Mater Chem A 2021;9:1048-61. [DOI: 10.1039/d0ta08664a] [Cited by in Crossref: 13] [Cited by in F6Publishing: 30] [Article Influence: 13.0] [Reference Citation Analysis]
208 Xing Y, Xu Y, Wu Q, Wang G, Zhu M. Optoelectronic functional fibers: materials, fabrication, and application for smart textiles. J Mater Chem C 2021;9:439-55. [DOI: 10.1039/d0tc03983g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
209 Al-ghaus Z, Akbarinejad A, Zhu B, Travas-sejdic J. Polyluminol-polyoxometalate hybrid hydrogels as flexible and soft supercapacitor electrodes. J Mater Chem A 2021;9:20783-93. [DOI: 10.1039/d1ta05150d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
210 Zokaei S, Kroon R, Gladisch J, Paulsen BD, Sohn W, Hofmann AI, Persson G, Stamm A, Syrén PO, Olsson E, Rivnay J, Stavrinidou E, Lund A, Müller C. Toughening of a Soft Polar Polythiophene through Copolymerization with Hard Urethane Segments. Adv Sci (Weinh) 2021;8:2002778. [PMID: 33511014 DOI: 10.1002/advs.202002778] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
211 Zhang Q, Liu X, Zhang J, Duan L, Gao G. A highly conductive hydrogel driven by phytic acid towards a wearable sensor with freezing and dehydration resistance. J Mater Chem A 2021;9:22615-25. [DOI: 10.1039/d1ta06408h] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
212 Fu Q, Cui C, Meng L, Hao S, Dai R, Yang J. Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring. Mater Chem Front 2021;5:2051-91. [DOI: 10.1039/d0qm00748j] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 12.0] [Reference Citation Analysis]
213 Faruk MO, Ahmed A, Adak B, Marzana M, Hossain MM, Mukhopadhyay S. High performance 2D MXene based conducting polymer hybrids: synthesis to emerging applications. J Mater Chem C 2021;9:10193-215. [DOI: 10.1039/d1tc02240g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
214 Yu Y, Peng S, Sha Z, Cheng TX, Wu S, Wang CH. High-precision, stretchable kirigami-capacitive sensor with ultra-low cross-sensitivity for body temperature monitoring. J Mater Chem A 2021;9:24874-86. [DOI: 10.1039/d1ta06978k] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
215 Wu D, Shao J. Graphene-based flexible all-solid-state supercapacitors. Mater Chem Front 2021;5:557-83. [DOI: 10.1039/d0qm00291g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 10.0] [Reference Citation Analysis]
216 Yin J, Hinchet R, Shea H, Majidi C. Wearable Soft Technologies for Haptic Sensing and Feedback. Adv Funct Mater 2021;31:2007428. [DOI: 10.1002/adfm.202007428] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 15.0] [Reference Citation Analysis]
217 Tsikriteas ZM, Roscow JI, Bowen CR, Khanbareh H. Flexible ferroelectric wearable devices for medical applications. iScience 2021;24:101987. [PMID: 33490897 DOI: 10.1016/j.isci.2020.101987] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
218 Hussain S, Park SY. Sweat-Based Noninvasive Skin-Patchable Urea Biosensors with Photonic Interpenetrating Polymer Network Films Integrated into PDMS Chips. ACS Sens 2020;5:3988-98. [PMID: 33259201 DOI: 10.1021/acssensors.0c01757] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
219 Goncharova IK, Tukhvatshin RS, Kholodkov DN, Novikov RA, Solodilov VI, Arzumanyan AV. Dumbbell-Shaped, Graft and Bottlebrush Polymers with All-Siloxane Nature: Synthetic Methodology, Thermal, and Rheological Behavior. Macromol Rapid Commun 2021;42:e2000645. [PMID: 33345394 DOI: 10.1002/marc.202000645] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
220 Wang H, Lu J, Huang H, Fang S, Zubair M, Peng Z. A highly elastic, Room-temperature repairable and recyclable conductive hydrogel for stretchable electronics. J Colloid Interface Sci 2021;588:295-304. [PMID: 33406464 DOI: 10.1016/j.jcis.2020.12.035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
221 Thum MD, Ratchford DC, Casalini R, Wynne JH, Lundin JG. Azobenzene-Doped Liquid Crystals in Electrospun Nanofibrous Mats for Photochemical Phase Control. ACS Appl Nano Mater 2021;4:297-304. [DOI: 10.1021/acsanm.0c02654] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
222 Wen F, He T, Liu H, Chen H, Zhang T, Lee C. Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era. Nano Energy 2020;78:105155. [DOI: 10.1016/j.nanoen.2020.105155] [Cited by in Crossref: 33] [Cited by in F6Publishing: 12] [Article Influence: 16.5] [Reference Citation Analysis]
223 Niu Y, Liu H, He R, Li Z, Ren H, Gao B, Guo H, Genin GM, Xu F. The new generation of soft and wearable electronics for health monitoring in varying environment: From normal to extreme conditions. Materials Today 2020;41:219-42. [DOI: 10.1016/j.mattod.2020.10.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 6.5] [Reference Citation Analysis]
224 Silva AF, Tavakoli M. Domiciliary Hospitalization through Wearable Biomonitoring Patches: Recent Advances, Technical Challenges, and the Relation to Covid-19. Sensors (Basel) 2020;20:E6835. [PMID: 33260466 DOI: 10.3390/s20236835] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
225 Bizzego A, Gabrieli G, Furlanello C, Esposito G. Comparison of Wearable and Clinical Devices for Acquisition of Peripheral Nervous System Signals. Sensors (Basel) 2020;20:E6778. [PMID: 33260880 DOI: 10.3390/s20236778] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
226 Liu Y, Shang S, Mo S, Wang P, Wang H. Eco-friendly Strategies for the Material and Fabrication of Wearable Sensors. Int J of Precis Eng and Manuf -Green Tech 2021;8:1323-46. [DOI: 10.1007/s40684-020-00285-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
227 Gui Q, He Y, Wang Y. Soft Electronics Based on Liquid Conductors. Adv Electron Mater 2021;7:2000780. [DOI: 10.1002/aelm.202000780] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
228 Du Y, Yu G, Dai X, Wang X, Yao B, Kong J. Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring. ACS Appl Mater Interfaces 2020;12:51987-98. [PMID: 33142058 DOI: 10.1021/acsami.0c15578] [Cited by in Crossref: 12] [Article Influence: 6.0] [Reference Citation Analysis]
229 Wang L, Liu W, Yan Z, Wang F, Wang X. Stretchable and Shape‐Adaptable Triboelectric Nanogenerator Based on Biocompatible Liquid Electrolyte for Biomechanical Energy Harvesting and Wearable Human–Machine Interaction. Adv Funct Mater 2021;31:2007221. [DOI: 10.1002/adfm.202007221] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 12.5] [Reference Citation Analysis]
230 Ghora M, Majumdar P, Anas M, Varghese S. Enabling Control over Mechanical Conformity and Luminescence in Molecular Crystals: Interaction Engineering in Action. Chemistry 2020;26:14488-95. [PMID: 32761653 DOI: 10.1002/chem.202003311] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
231 Yao Y, Jiang Z, Yao J, Luo J, Xu C, Chong J, Liu T. Self-Sealing Carbon Patterns by One-Step Direct Laser Writing and Their Use in Multifunctional Wearable Sensors. ACS Appl Mater Interfaces 2020;12:50600-9. [PMID: 33131273 DOI: 10.1021/acsami.0c14949] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
232 Kim H, Kim YS, Mahmood M, Kwon S, Epps F, Rim YS, Yeo WH. Wireless, continuous monitoring of daily stress and management practice via soft bioelectronics. Biosens Bioelectron 2020;173:112764. [PMID: 33190046 DOI: 10.1016/j.bios.2020.112764] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
233 Chen T, Zhang SH, Lin QH, Wang MJ, Yang Z, Zhang YL, Wang FX, Sun LN. Highly sensitive and wide-detection range pressure sensor constructed on a hierarchical-structured conductive fabric as a human-machine interface. Nanoscale 2020;12:21271-9. [PMID: 33063798 DOI: 10.1039/d0nr05976e] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
234 Kwon Y, Kim H, Mahmood M, Kim Y, Demolder C, Yeo W. Printed, Wireless, Soft Bioelectronics and Deep Learning Algorithm for Smart Human–Machine Interfaces. ACS Appl Mater Interfaces 2020;12:49398-406. [DOI: 10.1021/acsami.0c14193] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
235 Kim H, Kwon Y, Lim H, Kim J, Kim Y, Yeo W. Recent Advances in Wearable Sensors and Integrated Functional Devices for Virtual and Augmented Reality Applications. Adv Funct Mater 2021;31:2005692. [DOI: 10.1002/adfm.202005692] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 7.5] [Reference Citation Analysis]
236 Goldoni R, Farronato M, Connelly ST, Tartaglia GM, Yeo WH. Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens Bioelectron 2021;171:112723. [PMID: 33096432 DOI: 10.1016/j.bios.2020.112723] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
237 Utomo DS, Kim JH, Lee D, Park J, Kang YC, Kim YH, Choi JW, Song M. Fractional structured molybdenum oxide catalyst as counter electrodes of all-solid-state fiber dye-sensitized solar cells. J Colloid Interface Sci 2021;584:520-7. [PMID: 33129161 DOI: 10.1016/j.jcis.2020.10.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
238 Liang J, Qiu P, Zhu Y, Huang H, Gao Z, Zhang Z, Shi X, Chen L. Crystalline Structure-Dependent Mechanical and Thermoelectric Performance in Ag2Se1-x S x System. Research (Wash D C) 2020;2020:6591981. [PMID: 33029590 DOI: 10.34133/2020/6591981] [Cited by in Crossref: 7] [Cited by in F6Publishing: 20] [Article Influence: 3.5] [Reference Citation Analysis]
239 Zhu M, Ali MU, Zou C, Xie W, Li S, Meng H. Tactile and temperature sensors based on organic transistors: Towards e-skin fabrication. Front Phys 2021;16. [DOI: 10.1007/s11467-020-0985-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
240 Liu GS, Yang F, Xu J, Kong Y, Zheng H, Chen L, Chen Y, Wu MX, Yang BR, Luo Y, Chen Z. Ultrasonically Patterning Silver Nanowire-Acrylate Composite for Highly Sensitive and Transparent Strain Sensors Based on Parallel Cracks. ACS Appl Mater Interfaces 2020;12:47729-38. [PMID: 32967418 DOI: 10.1021/acsami.0c11815] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 5.5] [Reference Citation Analysis]
241 Wang P, Hu M, Wang H, Chen Z, Feng Y, Wang J, Ling W, Huang Y. The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. Adv Sci (Weinh) 2020;7:2001116. [PMID: 33101851 DOI: 10.1002/advs.202001116] [Cited by in Crossref: 62] [Cited by in F6Publishing: 63] [Article Influence: 31.0] [Reference Citation Analysis]
242 Su Y, Sui G, Lan J, Yang X. A highly stretchable dielectric elastomer based on core-shell structured soft polymer-coated liquid-metal nanofillers. Chem Commun (Camb) 2020;56:11625-8. [PMID: 32870203 DOI: 10.1039/d0cc04224b] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
243 Song Y, Min J, Yu Y, Wang H, Yang Y, Zhang H, Gao W. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020;6:eaay9842. [PMID: 32998888 DOI: 10.1126/sciadv.aay9842] [Cited by in Crossref: 61] [Cited by in F6Publishing: 137] [Article Influence: 30.5] [Reference Citation Analysis]
244 Goldoni R, Ozkan-Aydin Y, Kim YS, Kim J, Zavanelli N, Mahmood M, Liu B, Hammond FL 3rd, Goldman DI, Yeo WH. Stretchable Nanocomposite Sensors, Nanomembrane Interconnectors, and Wireless Electronics toward Feedback-Loop Control of a Soft Earthworm Robot. ACS Appl Mater Interfaces 2020;12:43388-97. [PMID: 32791828 DOI: 10.1021/acsami.0c10672] [Cited by in Crossref: 10] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
245 Matsuda T, Kawakami R, Nakajima T, Gong JP. Crack Tip Field of a Double-Network Gel: Visualization of Covalent Bond Scission through Mechanoradical Polymerization. Macromolecules 2020;53:8787-95. [DOI: 10.1021/acs.macromol.0c01485] [Cited by in Crossref: 17] [Cited by in F6Publishing: 6] [Article Influence: 8.5] [Reference Citation Analysis]
246 Wei Y, Xiang L, Ou H, Li F, Zhang Y, Qian Y, Hao L, Diao J, Zhang M, Zhu P, Liu Y, Kuang Y, Chen G. MXene‐Based Conductive Organohydrogels with Long‐Term Environmental Stability and Multifunctionality. Adv Funct Mater 2020;30:2005135. [DOI: 10.1002/adfm.202005135] [Cited by in Crossref: 84] [Cited by in F6Publishing: 86] [Article Influence: 42.0] [Reference Citation Analysis]
247 Mamun MAA, Yuce MR. Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Adv Funct Mater 2020;30:2005703. [DOI: 10.1002/adfm.202005703] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 19.5] [Reference Citation Analysis]
248 Cui C, Fu Q, Meng L, Hao S, Dai R, Yang J. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Appl Bio Mater 2021;4:85-121. [DOI: 10.1021/acsabm.0c00807] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 7.5] [Reference Citation Analysis]
249 [DOI: 10.1109/fleps49123.2020.9239568] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
250 Park S, Kim H, Kim JH, Yeo WH. Advanced Nanomaterials, Printing Processes, and Applications for Flexible Hybrid Electronics. Materials (Basel) 2020;13:E3587. [PMID: 32823736 DOI: 10.3390/ma13163587] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
251 Lyu W, Zhang W, Liu H, Liu Y, Zuo H, Yan C, Faul CFJ, Thomas A, Zhu M, Liao Y. Conjugated Microporous Polymer Network Grafted Carbon Nanotube Fibers with Tunable Redox Activity for Efficient Flexible Wearable Energy Storage. Chem Mater 2020;32:8276-85. [DOI: 10.1021/acs.chemmater.0c02089] [Cited by in Crossref: 17] [Cited by in F6Publishing: 3] [Article Influence: 8.5] [Reference Citation Analysis]
252 Li W, Liu Q, Zhang Y, Li C, He Z, Choy WCH, Low PJ, Sonar P, Kyaw AKK. Biodegradable Materials and Green Processing for Green Electronics. Adv Mater 2020;32:e2001591. [PMID: 32584502 DOI: 10.1002/adma.202001591] [Cited by in Crossref: 66] [Cited by in F6Publishing: 68] [Article Influence: 33.0] [Reference Citation Analysis]
253 Kim H, Kim YS, Mahmood M, Kwon S, Zavanelli N, Kim HS, Rim YS, Epps F, Yeo WH. Fully Integrated, Stretchable, Wireless Skin-Conformal Bioelectronics for Continuous Stress Monitoring in Daily Life. Adv Sci (Weinh) 2020;7:2000810. [PMID: 32775164 DOI: 10.1002/advs.202000810] [Cited by in Crossref: 37] [Cited by in F6Publishing: 33] [Article Influence: 18.5] [Reference Citation Analysis]
254 Xu S, Wu W. Ink‐Based Additive Nanomanufacturing of Functional Materials for Human‐Integrated Smart Wearables. Advanced Intelligent Systems 2020;2:2000117. [DOI: 10.1002/aisy.202000117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
255 Lai CW, Yu SS. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals. ACS Appl Mater Interfaces 2020;12:34235-44. [PMID: 32614162 DOI: 10.1021/acsami.0c11152] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
256 Yang J, Tang D, Ao J, Ghosh T, Neumann TV, Zhang D, Piskarev Y, Yu T, Truong VK, Xie K, Lai Y, Li Y, Dickey MD. Ultrasoft Liquid Metal Elastomer Foams with Positive and Negative Piezopermittivity for Tactile Sensing. Adv Funct Mater 2020;30:2002611. [DOI: 10.1002/adfm.202002611] [Cited by in Crossref: 73] [Cited by in F6Publishing: 60] [Article Influence: 36.5] [Reference Citation Analysis]
257 Silva RML, Merces L, Bof Bufon CC. Temperature-Independent Polarization of Ultrathin Phthalocyanine-Based Hybrid Organic/Inorganic Heterojunctions. ACS Appl Mater Interfaces 2020;12:29556-65. [PMID: 32447957 DOI: 10.1021/acsami.0c02067] [Reference Citation Analysis]
258 Qiao L, Benzigar MR, Subramony JA, Lovell NH, Liu G. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Appl Mater Interfaces 2020;12:34337-61. [DOI: 10.1021/acsami.0c07614] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
259 Xiang L, Zeng X, Xia F, Jin W, Liu Y, Hu Y. Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. ACS Nano 2020;14:6449-69. [PMID: 32479071 DOI: 10.1021/acsnano.0c01164] [Cited by in Crossref: 42] [Cited by in F6Publishing: 32] [Article Influence: 21.0] [Reference Citation Analysis]
260 An F, Qu K, Zhong G, Dong Y, Ming W, Zi M, Liu Z, Wang Y, Qi B, Ding Z, Xu J, Luo Z, Gao X, Xie S, Gao P, Li J. Highly Flexible and Twistable Freestanding Single Crystalline Magnetite Film with Robust Magnetism. Adv Funct Mater 2020;30:2003495. [DOI: 10.1002/adfm.202003495] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 14.0] [Reference Citation Analysis]
261 Brown MS, Mendoza M, Chavoshnejad P, Razavi MJ, Mahler GJ, Koh A. Electronic‐ECM: A Permeable Microporous Elastomer for an Advanced Bio‐Integrated Continuous Sensing Platform. Adv Mater Technol 2020;5:2000242. [DOI: 10.1002/admt.202000242] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
262 Herbert R, Lim H, Yeo W. Printed, Soft, Nanostructured Strain Sensors for Monitoring of Structural Health and Human Physiology. ACS Appl Mater Interfaces 2020;12:25020-30. [DOI: 10.1021/acsami.0c04857] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 8.5] [Reference Citation Analysis]
263 Wang J, Zhang Z, Wang S, Zhang R, Guo Y, Cheng G, Gu Y, Liu K, Chen K. Superstable copper nanowire network electrodes by single-crystal graphene covering and their applications in flexible nanogenerator and light-emitting diode. Nano Energy 2020;71:104638. [DOI: 10.1016/j.nanoen.2020.104638] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 4.5] [Reference Citation Analysis]
264 [DOI: 10.1109/robosoft48309.2020.9116051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
265 Khan Y, Thielens A, Muin S, Ting J, Baumbauer C, Arias AC. A New Frontier of Printed Electronics: Flexible Hybrid Electronics. Adv Mater 2020;32:e1905279. [PMID: 31742812 DOI: 10.1002/adma.201905279] [Cited by in Crossref: 226] [Cited by in F6Publishing: 194] [Article Influence: 113.0] [Reference Citation Analysis]
266 Guo Q, Zhang X, Zhao F, Song Q, Su G, Tan Y, Tao Q, Zhou T, Yu Y, Zhou Z, Lu C. Protein-Inspired Self-Healable Ti3C2 MXenes/Rubber-Based Supramolecular Elastomer for Intelligent Sensing. ACS Nano 2020;14:2788-97. [PMID: 32045216 DOI: 10.1021/acsnano.9b09802] [Cited by in Crossref: 71] [Cited by in F6Publishing: 57] [Article Influence: 35.5] [Reference Citation Analysis]
267 Yang X, Cheng H. Recent Developments of Flexible and Stretchable Electrochemical Biosensors. Micromachines (Basel) 2020;11:E243. [PMID: 32111023 DOI: 10.3390/mi11030243] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 17.0] [Reference Citation Analysis]
268 Mahmood M, Kwon S, Berkmen GK, Kim YS, Scorr L, Jinnah HA, Yeo WH. Soft Nanomembrane Sensors and Flexible Hybrid Bioelectronics for Wireless Quantification of Blepharospasm. IEEE Trans Biomed Eng 2020;67:3094-100. [PMID: 32091988 DOI: 10.1109/TBME.2020.2975773] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
269 Song YJ, Kim JW, Cho HE, Son YH, Lee MH, Lee J, Choi KC, Lee SM. Fibertronic Organic Light-Emitting Diodes toward Fully Addressable, Environmentally Robust, Wearable Displays. ACS Nano 2020;14:1133-40. [PMID: 31922392 DOI: 10.1021/acsnano.9b09005] [Cited by in Crossref: 30] [Cited by in F6Publishing: 13] [Article Influence: 15.0] [Reference Citation Analysis]
270 Chen J, Xiao W, Hu T, Chen P, Lan T, Li P, Li Y, Mi B, Ma Y. Controlling Electrode Spacing by Polystyrene Microsphere Spacers for Highly Stable and Flexible Transparent Supercapacitors. ACS Appl Mater Interfaces 2020;12:5885-91. [PMID: 31934746 DOI: 10.1021/acsami.9b19878] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
271 Taubert A, Leroux F, Rabu P, de Zea Bermudez V. Advanced hybrid nanomaterials. Beilstein J Nanotechnol 2019;10:2563-7. [PMID: 31921535 DOI: 10.3762/bjnano.10.247] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
272 Wen N, Zhang L, Jiang D, Wu Z, Li B, Sun C, Guo Z. Emerging flexible sensors based on nanomaterials: recent status and applications. J Mater Chem A 2020;8:25499-527. [DOI: 10.1039/d0ta09556g] [Cited by in Crossref: 15] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
273 Kim D, Ahn D, Kim K, Jeong Y. A flexible yet wear-resistant co-citrate elastomer for on-demand disposable patch sensors. J Mater Chem C 2020;8:10047-59. [DOI: 10.1039/d0tc02058c] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
274 Liu H, Wu S, Tian N, Yan F, You C, Yang Y. Carbon foams: 3D porous carbon materials holding immense potential. J Mater Chem A 2020;8:23699-723. [DOI: 10.1039/d0ta08749a] [Cited by in Crossref: 16] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
275 Nie K, Wang Z, Zhou H, Tang R, Shen X, Sun Q. Improved dielectricity of anisotropic wood slices and bioinspired micropatterned film electrodes for highly sensitive flexible electronic sensors. J Mater Chem C 2020;8:16113-20. [DOI: 10.1039/d0tc03729j] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
276 Kim YS, Basir A, Herbert R, Kim J, Yoo H, Yeo WH. Soft Materials, Stretchable Mechanics, and Optimized Designs for Body-Wearable Compliant Antennas. ACS Appl Mater Interfaces 2020;12:3059-67. [PMID: 31842536 DOI: 10.1021/acsami.9b20233] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
277 Huang J, Zhao M, Cai Y, Zimniewska M, Li D, Wei Q. A Dual‐Mode Wearable Sensor Based on Bacterial Cellulose Reinforced Hydrogels for Highly Sensitive Strain/Pressure Sensing. Adv Electron Mater 2020;6:1900934. [DOI: 10.1002/aelm.201900934] [Cited by in Crossref: 26] [Cited by in F6Publishing: 36] [Article Influence: 8.7] [Reference Citation Analysis]
278 Song Y, Min J, Gao W. Wearable and Implantable Electronics: Moving toward Precision Therapy. ACS Nano 2019;13:12280-6. [PMID: 31725255 DOI: 10.1021/acsnano.9b08323] [Cited by in Crossref: 79] [Cited by in F6Publishing: 56] [Article Influence: 26.3] [Reference Citation Analysis]
279 Cui C, Shao C, Meng L, Yang J. High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors. ACS Appl Mater Interfaces 2019;11:39228-37. [DOI: 10.1021/acsami.9b15817] [Cited by in Crossref: 72] [Cited by in F6Publishing: 43] [Article Influence: 24.0] [Reference Citation Analysis]
280 Kwon Y, Yune S, Song Y, Yeo W, Choa Y. Green Manufacturing of Highly Conductive Cu 2 O and Cu Nanoparticles for Photonic-Sintered Printed Electronics. ACS Appl Electron Mater 2019;1:2069-75. [DOI: 10.1021/acsaelm.9b00444] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]