BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao Y, Guo Q, Dai X, Wei X, Yu Y, Chen X, Li C, Cao Z, Zhang X. A Biomimetic Non-Antibiotic Approach to Eradicate Drug-Resistant Infections. Adv Mater 2019;31:e1806024. [PMID: 30589118 DOI: 10.1002/adma.201806024] [Cited by in Crossref: 76] [Cited by in F6Publishing: 67] [Article Influence: 25.3] [Reference Citation Analysis]
Number Citing Articles
1 Peng X, Zhu L, Wang Z, Zhan X. Enhanced stability of the bactericidal activity of nisin through conjugation with gellan gum. International Journal of Biological Macromolecules 2020;148:525-32. [DOI: 10.1016/j.ijbiomac.2020.01.164] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
2 Yu Y, Li P, Zhu C, Ning N, Zhang S, Vancso GJ. Multifunctional and Recyclable Photothermally Responsive Cryogels as Efficient Platforms for Wound Healing. Adv Funct Mater 2019;29:1904402. [DOI: 10.1002/adfm.201904402] [Cited by in Crossref: 105] [Cited by in F6Publishing: 78] [Article Influence: 35.0] [Reference Citation Analysis]
3 Li W, Thian ES, Wang M, Wang Z, Ren L. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Adv Sci (Weinh) 2021;8:e2100368. [PMID: 34351704 DOI: 10.1002/advs.202100368] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 19.0] [Reference Citation Analysis]
4 Ye X, Feng T, Li L, Wang T, Li P, Huang W. Theranostic platforms for specific discrimination and selective killing of bacteria. Acta Biomater 2021;125:29-40. [PMID: 33582362 DOI: 10.1016/j.actbio.2021.02.010] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
5 Mei L, Lin C, Cao F, Yang D, Jia X, Hu S, Miao X, Wu P. Amino-Functionalized Graphene Oxide for the Capture and Photothermal Inhibition of Bacteria. ACS Appl Nano Mater 2019;2:2902-8. [DOI: 10.1021/acsanm.9b00348] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
6 Zhao X, Tang H, Jiang X. Deploying Gold Nanomaterials in Combating Multi-Drug-Resistant Bacteria. ACS Nano 2022. [PMID: 35776694 DOI: 10.1021/acsnano.2c02269] [Reference Citation Analysis]
7 Li J, Wei X, Hu Y, Gao Y, Zhang Y, Zhang X. A fluorescent nanobiocide based on ROS generation for eliminating pathogenic and multidrug-resistant bacteria. J Mater Chem B 2021;9:3689-95. [PMID: 33861292 DOI: 10.1039/d1tb00273b] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 González-cuesta M, Ortiz Mellet C, García Fernández JM. Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chem Commun 2020;56:5207-22. [DOI: 10.1039/d0cc01135e] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 8.5] [Reference Citation Analysis]
9 Xie T, Qi Y, Li Y, Zhang F, Li W, Zhong D, Tang Z, Zhou M. Ultrasmall Ga-ICG nanoparticles based gallium ion/photodynamic synergistic therapy to eradicate biofilms and against drug-resistant bacterial liver abscess. Bioact Mater 2021;6:3812-23. [PMID: 33898879 DOI: 10.1016/j.bioactmat.2021.03.032] [Reference Citation Analysis]
10 Liu H, Qiao Z, Jang YO, Kim MG, Zou Q, Lee HJ, Koo B, Kim SH, Yun K, Kim HS, Shin Y. Diatomaceous earth/zinc oxide micro-composite assisted antibiotics in fungal therapy. Nano Converg 2021;8:32. [PMID: 34694514 DOI: 10.1186/s40580-021-00283-6] [Reference Citation Analysis]
11 Chen H, Yang J, Sun L, Zhang H, Guo Y, Qu J, Jiang W, Chen W, Ji J, Yang Y, Wang B. Synergistic Chemotherapy and Photodynamic Therapy of Endophthalmitis Mediated by Zeolitic Imidazolate Framework‐Based Drug Delivery Systems. Small 2019;15:1903880. [DOI: 10.1002/smll.201903880] [Cited by in Crossref: 41] [Cited by in F6Publishing: 36] [Article Influence: 13.7] [Reference Citation Analysis]
12 Liu Y, Li J, Yi L, Wang H. Polymeric Nanoshell-Stabilized Liquid Metal for Bactericidal Photonanomedicine. ACS Appl Bio Mater . [DOI: 10.1021/acsabm.1c01169] [Reference Citation Analysis]
13 Yan L, Alba M, Tabassum N, Voelcker NH. Micro‐ and Nanosystems for Advanced Transdermal Delivery. Adv Therap 2019;2:1900141. [DOI: 10.1002/adtp.201900141] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
14 Xu X, Wang S, Wu H, Liu Y, Xu F, Zhao J. A multimodal antimicrobial platform based on MXene for treatment of wound infection. Colloids Surf B Biointerfaces 2021;207:111979. [PMID: 34303995 DOI: 10.1016/j.colsurfb.2021.111979] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Sun F, Wang Y, Wang Q, Wang X, Yao P, Feng W, Yuan Q, Qi X, Chen S, Pu W, Huang R, Dai Q, Lv J, Wang Q, Shen W, Xia P, Zhang D. Self-Illuminating Triggered Release of Therapeutics from Photocleavable Nanoprodrug for the Targeted Treatment of Breast Cancer. ACS Appl Mater Interfaces 2022;14:8766-81. [PMID: 35166116 DOI: 10.1021/acsami.1c21665] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Hu J, Zhang C, Zhou L, Hu Q, Kong Y, Song D, Cheng Y, Zhang Y. A smart hydrogel for on-demand delivery of antibiotics and efficient eradication of biofilms. Sci China Mater 2021;64:1035-46. [DOI: 10.1007/s40843-020-1480-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Chang M, Dong C, Huang H, Ding L, Feng W, Chen Y. Nanobiomimetic Medicine. Adv Funct Materials. [DOI: 10.1002/adfm.202204791] [Reference Citation Analysis]
18 Zhao B, Wang H, Dong W, Cheng S, Li H, Tan J, Zhou J, He W, Li L, Zhang J, Luo G, Qian W. A multifunctional platform with single-NIR-laser-triggered photothermal and NO release for synergistic therapy against multidrug-resistant Gram-negative bacteria and their biofilms. J Nanobiotechnology 2020;18:59. [PMID: 32293461 DOI: 10.1186/s12951-020-00614-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
19 Zhou C, Guo Q, Feng J, Liu Z, Qiao Y. Tunable AIE-Active Assemblies Inducing Bacterial Agglutination toward Noninvasive Photodynamic Antiseptic. ACS Appl Bio Mater 2022. [PMID: 35713485 DOI: 10.1021/acsabm.2c00370] [Reference Citation Analysis]
20 Ren H, Han L, Zhang L, Zhao Y, Lei C, Xiu Z, Zhao N, Yu B, Zhou F, Duan S, Xu F. Inhalable responsive polysaccharide-based antibiotic delivery nanoparticles to overcome mucus barrier for lung infection treatment. Nano Today 2022;44:101489. [DOI: 10.1016/j.nantod.2022.101489] [Reference Citation Analysis]
21 Zhai J, Zhou Y, Wang Z, Fan L, Xiao C, Wang X, Li Y, Zhou Z, Luo Y, Li C, Qi S, Tan G, Zhou L, Yu P, Ning C. Endogenous electric field as a bridge for antibacterial ion transport from implant to bacteria. Sci China Mater 2020;63:1831-41. [DOI: 10.1007/s40843-020-1329-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Li P, She W, Luo Y, He D, Chen J, Ning N, Yu Y, de Beer S, Zhang S. One-pot, self-catalyzed synthesis of self-adherent hydrogels for photo-thermal, antimicrobial wound treatment. J Mater Chem B 2021;9:159-69. [PMID: 33226389 DOI: 10.1039/d0tb02160a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 3.5] [Reference Citation Analysis]
23 Yang C, Luo Y, Lin H, Ge M, Shi J, Zhang X. Niobium Carbide MXene Augmented Medical Implant Elicits Bacterial Infection Elimination and Tissue Regeneration. ACS Nano 2021;15:1086-99. [PMID: 33372766 DOI: 10.1021/acsnano.0c08045] [Cited by in Crossref: 37] [Cited by in F6Publishing: 24] [Article Influence: 37.0] [Reference Citation Analysis]
24 Vallet-Regí M, González B, Izquierdo-Barba I. Nanomaterials as Promising Alternative in the Infection Treatment. Int J Mol Sci 2019;20:E3806. [PMID: 31382674 DOI: 10.3390/ijms20153806] [Cited by in Crossref: 47] [Cited by in F6Publishing: 27] [Article Influence: 15.7] [Reference Citation Analysis]
25 Zhu J, Tian J, Yang C, Chen J, Wu L, Fan M, Cai X. L-Arg-Rich Amphiphilic Dendritic Peptide as a Versatile NO Donor for NO/Photodynamic Synergistic Treatment of Bacterial Infections and Promoting Wound Healing. Small 2021;17:e2101495. [PMID: 34213822 DOI: 10.1002/smll.202101495] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Wei G, Yang G, Wang Y, Jiang H, Fu Y, Yue G, Ju R. Phototherapy-based combination strategies for bacterial infection treatment. Theranostics 2020;10:12241-62. [PMID: 33204340 DOI: 10.7150/thno.52729] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 12.0] [Reference Citation Analysis]
27 Dykman LA, Khlebtsov NG. Gold nanoparticles in chemo-, immuno-, and combined therapy: review [Invited]. Biomed Opt Express 2019;10:3152-82. [PMID: 31467774 DOI: 10.1364/BOE.10.003152] [Cited by in Crossref: 22] [Cited by in F6Publishing: 7] [Article Influence: 7.3] [Reference Citation Analysis]
28 Zhu Y, Wu S, Sun Y, Zou X, Zheng L, Duan S, Wang J, Yu B, Sui R, Xu F. Bacteria‐Targeting Photodynamic Nanoassemblies for Efficient Treatment of Multidrug‐Resistant Biofilm Infected Keratitis. Adv Funct Materials 2022;32:2111066. [DOI: 10.1002/adfm.202111066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Ostadhossein F, Moitra P, Altun E, Dutta D, Sar D, Tripathi I, Hsiao SH, Kravchuk V, Nie S, Pan D. Function-adaptive clustered nanoparticles reverse Streptococcus mutans dental biofilm and maintain microbiota balance. Commun Biol 2021;4:846. [PMID: 34267305 DOI: 10.1038/s42003-021-02372-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
30 Bai Y, Hu Y, Gao Y, Wei X, Li J, Zhang Y, Wu Z, Zhang X. Oxygen Self-Supplying Nanotherapeutic for Mitigation of Tissue Hypoxia and Enhanced Photodynamic Therapy of Bacterial Keratitis. ACS Appl Mater Interfaces 2021;13:33790-801. [PMID: 34254513 DOI: 10.1021/acsami.1c04996] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Han Q, Lau JW, Do TC, Zhang Z, Xing B. Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS Appl Bio Mater 2021;4:3937-61. [DOI: 10.1021/acsabm.0c01341] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
32 Yin M, Yang M, Yan D, Yang L, Wan X, Xiao J, Yao Y, Luo J. Surface-Charge-Switchable and Size-Transformable Thermosensitive Nanocomposites for Chemo-Photothermal Eradication of Bacterial Biofilms in Vitro and in Vivo. ACS Appl Mater Interfaces 2022;14:8847-64. [PMID: 35138798 DOI: 10.1021/acsami.1c24229] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
33 Lu Z, Zhang H, Huang J, Zhong Y, Wang M, Zhang L, Wang D. Gelatinase-responsive photonic crystal membrane for pathogenic bacteria detection and application in vitro health diagnosis. Biosensors and Bioelectronics 2022;202:114013. [DOI: 10.1016/j.bios.2022.114013] [Reference Citation Analysis]
34 Liu Y, Li S, Shen T, Chen L, Zhou J, Shi S, Wang Y, Zhao Z, Liao C, Wang C. N-terminal Myristoylation Enhanced the Antimicrobial Activity of Antimicrobial Peptide PMAP-36PW. Front Cell Infect Microbiol 2020;10:450. [PMID: 32984074 DOI: 10.3389/fcimb.2020.00450] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Liu H, Zou Q, Qiao Z, Jang YO, Koo B, Kim MG, Lee HJ, Kim SH, Shin Y. Facile Homobifunctional Imidoester Modification of Advanced Nanomaterials for Enhanced Antibiotic Synergistic Effect. ACS Appl Mater Interfaces 2021;13:40401-14. [PMID: 34405670 DOI: 10.1021/acsami.1c12352] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Ma W, Chen X, Fu L, Zhu J, Fan M, Chen J, Yang C, Yang G, Wu L, Mao G, Yang X, Mou X, Gu Z, Cai X. Ultra-efficient Antibacterial System Based on Photodynamic Therapy and CO Gas Therapy for Synergistic Antibacterial and Ablation Biofilms. ACS Appl Mater Interfaces 2020;12:22479-91. [PMID: 32329344 DOI: 10.1021/acsami.0c01967] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 12.5] [Reference Citation Analysis]
37 Dai X, Bai Y, Zhang Y, Ma Z, Li J, Sun H, Zhang X. Protonation-Activity Relationship of Bioinspired Ionizable Glycomimetics for the Growth Inhibition of Bacteria. ACS Appl Bio Mater 2020;3:3868-79. [PMID: 35025257 DOI: 10.1021/acsabm.0c00424] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Li J, Wang Y, Yang J, Liu W. Bacteria activated-macrophage membrane-coated tough nanocomposite hydrogel with targeted photothermal antibacterial ability for infected wound healing. Chemical Engineering Journal 2021;420:127638. [DOI: 10.1016/j.cej.2020.127638] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 14.0] [Reference Citation Analysis]
39 Ma Y, Jiang L, Hu J, Liu H, Wang S, Zuo P, Ji P, Qu L, Cui T. Multifunctional 3D Micro-Nanostructures Fabricated through Temporally Shaped Femtosecond Laser Processing for Preventing Thrombosis and Bacterial Infection. ACS Appl Mater Interfaces 2020;12:17155-66. [DOI: 10.1021/acsami.9b20766] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
40 Mohy El Dine T, Jimmidi R, Diaconu A, Fransolet M, Michiels C, De Winter J, Gillon E, Imberty A, Coenye T, Vincent SP. Pillar[5]arene-Based Polycationic Glyco[2]rotaxanes Designed as Pseudomonas aeruginosa Antibiofilm Agents. J Med Chem 2021;64:14728-44. [PMID: 34542288 DOI: 10.1021/acs.jmedchem.1c01241] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Lang S, Chen C, Xiang J, Liu Y, Li K, Hu Q, Liu G. Facile and Robust Antibacterial Functionalization of Medical Cotton Gauze with Gallic Acids to Accelerate Wound Healing. Ind Eng Chem Res 2021;60:10225-34. [DOI: 10.1021/acs.iecr.1c01833] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
42 Zhao Y, Chen L, Wang Y, Song X, Li K, Yan X, Yu L, He Z. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res 2021;14:4417-41. [DOI: 10.1007/s12274-021-3417-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 14.0] [Reference Citation Analysis]
43 Yu Z, Lu Z, Huang J, Zhang J, Huang Y, Wang W, Chen Y, Liu K, Wang D. Surface Functional Nanofiber Membrane for Ultrasensitive and Naked-Eye Visualization of Bacterial Concentration. ACS Appl Bio Mater 2020;3:6466-77. [PMID: 35021778 DOI: 10.1021/acsabm.0c00875] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Huo J, Jia Q, Huang H, Zhang J, Li P, Dong X, Huang W. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem Soc Rev 2021;50:8762-89. [PMID: 34159993 DOI: 10.1039/d1cs00074h] [Reference Citation Analysis]
45 Zhao YQ, Sun Y, Zhang Y, Ding X, Zhao N, Yu B, Zhao H, Duan S, Xu FJ. Well-Defined Gold Nanorod/Polymer Hybrid Coating with Inherent Antifouling and Photothermal Bactericidal Properties for Treating an Infected Hernia. ACS Nano 2020;14:2265-75. [PMID: 32017535 DOI: 10.1021/acsnano.9b09282] [Cited by in Crossref: 88] [Cited by in F6Publishing: 68] [Article Influence: 44.0] [Reference Citation Analysis]
46 Qiao Z, Yao Y, Song S, Yin M, Yang M, Yan D, Yang L, Luo J. Gold nanorods with surface charge-switchable activities for enhanced photothermal killing of bacteria and eradication of biofilm. J Mater Chem B 2020;8:3138-49. [DOI: 10.1039/d0tb00298d] [Cited by in Crossref: 15] [Cited by in F6Publishing: 1] [Article Influence: 7.5] [Reference Citation Analysis]
47 Yu Y, Zhang Y, Cheng Y, Wang Y, Chen Z, Sun H, Wei X, Ma Z, Li J, Bai Y, Wu Z, Zhang X. NIR-activated nanosystems with self-modulated bacteria targeting for enhanced biofilm eradication and caries prevention. Bioactive Materials 2022;13:269-85. [DOI: 10.1016/j.bioactmat.2021.10.035] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
48 Cui T, Wu S, Sun Y, Ren J, Qu X. Self-Propelled Active Photothermal Nanoswimmer for Deep-Layered Elimination of Biofilm In Vivo. Nano Lett 2020;20:7350-8. [DOI: 10.1021/acs.nanolett.0c02767] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 7.0] [Reference Citation Analysis]
49 Zhang C, Huang L, Sun DW, Pu H. Interfacing metal-polyphenolic networks upon photothermal gold nanorods for triplex-evolved biocompatible bactericidal activity. J Hazard Mater 2021;:127824. [PMID: 34838354 DOI: 10.1016/j.jhazmat.2021.127824] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
50 Li Y, Cheng C, Gao X, Wang S, Ye H, Han X. Aminoglycoside hydrogels based on dynamic covalent bonds with pH sensitivity, biocompatibility, self‐healing, and antibacterial ability. J Appl Polym Sci 2020;137:49250. [DOI: 10.1002/app.49250] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
51 Wan Z, Zhang P, Lv L, Zhou Y. NIR light-assisted phototherapies for bone-related diseases and bone tissue regeneration: A systematic review. Theranostics 2020;10:11837-61. [PMID: 33052249 DOI: 10.7150/thno.49784] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
52 Liu C, Zhao Y, Su W, Chai J, Xu L, Cao J, Liu Y. Encapsulated DNase improving the killing efficiency of antibiotics in staphylococcal biofilms. J Mater Chem B 2020;8:4395-401. [DOI: 10.1039/d0tb00441c] [Cited by in Crossref: 7] [Article Influence: 3.5] [Reference Citation Analysis]
53 Li M, Wang H, Chen X, Jin S, Chen W, Meng Y, Liu Y, Guo Y, Jiang W, Xu X, Wang B. Chemical grafting of antibiotics into multilayer films through Schiff base reaction for self-defensive response to bacterial infections. Chemical Engineering Journal 2020;382:122973. [DOI: 10.1016/j.cej.2019.122973] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
54 Shen Z, Zheng S, Xiao S, Shen R, Liu S, Hu J. Red-Light-Mediated Photoredox Catalysis Enables Self-Reporting Nitric Oxide Release for Efficient Antibacterial Treatment. Angew Chem Int Ed Engl 2021;60:20452-60. [PMID: 34196472 DOI: 10.1002/anie.202107155] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
55 Zhao Y, Zhu Y, Yang G, Xia L, Yu F, Chen C, Zhang L, Cao H. A pH/H2O2 dual triggered nanoplatform for enhanced photodynamic antibacterial efficiency. J Mater Chem B 2021;9:5076-82. [PMID: 34120155 DOI: 10.1039/d1tb00441g] [Reference Citation Analysis]
56 Guan S, Li Y, Cheng C, Gao X, Gu X, Han X, Ye H. Manufacture of pH- and HAase-responsive hydrogels with on-demand and continuous antibacterial activity for full-thickness wound healing. Int J Biol Macromol 2020;164:2418-31. [PMID: 32798544 DOI: 10.1016/j.ijbiomac.2020.08.108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
57 Chia ZC, Yang LX, Cheng TY, Chen YJ, Cheng HL, Hsu FT, Wang YJ, Chen YY, Huang TC, Fang YS, Huang CC. In Situ Formation of Au-Glycopolymer Nanoparticles for Surface-Enhanced Raman Scattering-Based Biosensing and Single-Cell Immunity. ACS Appl Mater Interfaces 2021. [PMID: 34706531 DOI: 10.1021/acsami.1c13647] [Reference Citation Analysis]
58 Yu F, Chen C, Yang G, Ren Z, Cao H, Zhang L, Zhang W. An acid-triggered porphyrin-based block copolymer for enhanced photodynamic antibacterial efficacy. Sci China Chem 2021;64:459-66. [DOI: 10.1007/s11426-020-9904-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
59 Zhang X, Zhou Y, Wang G, Zhao Z, Jiang Z, Cui Y, Yue X, Huang Z, Huang Y, Pan X, Wu C. Co-spray-dried poly-L-lysine with L-leucine as dry powder inhalations for the treatment of pulmonary infection: Moisture-resistance and desirable aerosolization performance. Int J Pharm 2022;624:122011. [PMID: 35820517 DOI: 10.1016/j.ijpharm.2022.122011] [Reference Citation Analysis]
60 Hu H, Kang X, Shan Z, Yang X, Bing W, Wu L, Ge H, Ji H. A DNase-mimetic artificial enzyme for the eradication of drug-resistant bacterial biofilm infections. Nanoscale 2022;14:2676-85. [PMID: 35107481 DOI: 10.1039/d1nr07629a] [Reference Citation Analysis]
61 Zhao Y, Yu C, Yu Y, Wei X, Duan X, Dai X, Zhang X. Bioinspired Heteromultivalent Ligand-Decorated Nanotherapeutic for Enhanced Photothermal and Photodynamic Therapy of Antibiotic-Resistant Bacterial Pneumonia. ACS Appl Mater Interfaces 2019;11:39648-61. [DOI: 10.1021/acsami.9b15118] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
62 Niu Y, Zhang J, Sun J, Zhang X, Wu Z. A multi-targeted nanoconjugate for light-driven therapy of chronic wounds. Chemical Engineering Journal 2021;414:128835. [DOI: 10.1016/j.cej.2021.128835] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
63 Ju X, Chen J, Zhou M, Zhu M, Li Z, Gao S, Ou J, Xu D, Wu M, Jiang S, Hu Y, Tian Y, Niu Z. Combating Pseudomonas aeruginosa Biofilms by a Chitosan-PEG-Peptide Conjugate via Changes in Assembled Structure. ACS Appl Mater Interfaces 2020;12:13731-8. [DOI: 10.1021/acsami.0c02034] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 7.5] [Reference Citation Analysis]
64 Barbarossa A, Rosato A, Corbo F, Clodoveo ML, Fracchiolla G, Carrieri A, Carocci A. Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach. Antibiotics (Basel) 2022;11:816. [PMID: 35740222 DOI: 10.3390/antibiotics11060816] [Reference Citation Analysis]
65 Xia L, Tian J, Yue T, Cao H, Chu J, Cai H, Zhang W. Pillar[5]arene-Based Acid-Triggered Supramolecular Porphyrin Photosensitizer for Combating Bacterial Infections and Biofilm Dispersion. Adv Healthc Mater 2022;11:e2102015. [PMID: 34787954 DOI: 10.1002/adhm.202102015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Chen M, Long Z, Dong R, Wang L, Zhang J, Li S, Zhao X, Hou X, Shao H, Jiang X. Titanium Incorporation into Zr‐Porphyrinic Metal–Organic Frameworks with Enhanced Antibacterial Activity against Multidrug‐Resistant Pathogens. Small 2020;16:1906240. [DOI: 10.1002/smll.201906240] [Cited by in Crossref: 30] [Cited by in F6Publishing: 20] [Article Influence: 15.0] [Reference Citation Analysis]
67 Guan G, Win KY, Yao X, Yang W, Han MY. Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Adv Healthc Mater 2021;10:e2001158. [PMID: 33184997 DOI: 10.1002/adhm.202001158] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 14.0] [Reference Citation Analysis]
68 Li C, Cornel EJ, Du J. Advances and Prospects of Polymeric Particles for the Treatment of Bacterial Biofilms. ACS Appl Polym Mater 2021;3:2218-32. [DOI: 10.1021/acsapm.1c00003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 10] [Article Influence: 17.0] [Reference Citation Analysis]
69 Shen Z, Zheng S, Xiao S, Shen R, Liu S, Hu J. Red‐Light‐Mediated Photoredox Catalysis Enables Self‐Reporting Nitric Oxide Release for Efficient Antibacterial Treatment. Angew Chem 2021;133:20615-23. [DOI: 10.1002/ange.202107155] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
70 Su L, Feng Y, Wei K, Xu X, Liu R, Chen G. Carbohydrate-Based Macromolecular Biomaterials. Chem Rev 2021. [PMID: 34338501 DOI: 10.1021/acs.chemrev.0c01338] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Xu Y, Zhang H, Liu X. Antimicrobial Carbohydrate-Based Macromolecules: Their Structures and Activities. J Org Chem 2020;85. [DOI: 10.1021/acs.joc.0c01597] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
72 Wang Y, Yang Y, Shi Y, Song H, Yu C. Antibiotic-Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives. Adv Mater 2020;32:e1904106. [PMID: 31799752 DOI: 10.1002/adma.201904106] [Cited by in Crossref: 141] [Cited by in F6Publishing: 118] [Article Influence: 70.5] [Reference Citation Analysis]
73 Wei X, Li J, Zhang Y, Zheng Y, Zhang Y, Meng H, Wu G, Hu Y, Gao Y, Huang S, Wang W, Cheng Y, Wu Z, Zhang X. Synergy between Clinical Microenvironment Targeted Nanoplatform and Near-Infrared Light Irradiation for Managing Pseudomonas aeruginosa Infections. ACS Appl Mater Interfaces 2021;13:38979-89. [PMID: 34433249 DOI: 10.1021/acsami.1c08132] [Reference Citation Analysis]
74 Gao F, Li X, Zhang T, Ghosal A, Zhang G, Fan HM, Zhao L. Iron nanoparticles augmented chemodynamic effect by alternative magnetic field for wound disinfection and healing. Journal of Controlled Release 2020;324:598-609. [DOI: 10.1016/j.jconrel.2020.06.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
75 Liu X, Zhang J, Liu J, Zhou Q, Liu Z, Hu P, Yuan Z, Ramakrishna S, Yang D, Long Y. Bifunctional CuS composite nanofibers via in situ electrospinning for outdoor rapid hemostasis and simultaneous ablating superbug. Chemical Engineering Journal 2020;401:126096. [DOI: 10.1016/j.cej.2020.126096] [Cited by in Crossref: 16] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
76 Su K, Tan L, Liu X, Cui Z, Zheng Y, Li B, Han Y, Li Z, Zhu S, Liang Y, Feng X, Wang X, Wu S. Rapid Photo-Sonotherapy for Clinical Treatment of Bacterial Infected Bone Implants by Creating Oxygen Deficiency Using Sulfur Doping. ACS Nano 2020;14:2077-89. [PMID: 31990179 DOI: 10.1021/acsnano.9b08686] [Cited by in Crossref: 98] [Cited by in F6Publishing: 77] [Article Influence: 49.0] [Reference Citation Analysis]
77 Han H, Yang J, Li X, Qi Y, Yang Z, Han Z, Jiang Y, Stenzel M, Li H, Yin Y, Du Y, Liu J, Wang F. Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents. Nano Res 2021;:1-23. [PMID: 33500771 DOI: 10.1007/s12274-021-3293-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]