BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. Adv Mater 2019;31:e1802348. [PMID: 30272829 DOI: 10.1002/adma.201802348] [Cited by in Crossref: 128] [Cited by in F6Publishing: 122] [Article Influence: 42.7] [Reference Citation Analysis]
Number Citing Articles
1 Ruckdashel RR, Khadse N, Park JH. Smart E-Textiles: Overview of Components and Outlook. Sensors (Basel) 2022;22:6055. [PMID: 36015815 DOI: 10.3390/s22166055] [Reference Citation Analysis]
2 Sasaki K, Guerra G, Lei Phyu W, Chaisumritchoke S, Sutdet P, Kaewtip S. Assessment of Socket Pressure during Walking in Rapid Fit Prosthetic Sockets. Sensors 2022;22:5224. [DOI: 10.3390/s22145224] [Reference Citation Analysis]
3 Wang F, Zhao S, Jiang Q, Li R, Zhao Y, Huang Y, Wu X, Wang B, Zhang R. Advanced functional carbon nanotube fibers from preparation to application. Cell Reports Physical Science 2022. [DOI: 10.1016/j.xcrp.2022.100989] [Reference Citation Analysis]
4 Lee S, Duong QV, Her N, Luu AT, Lam NT, Choi ST. High-flexibility piezoelectric ribbon fiber fabrication through multi-material thermal drawing. J Mech Sci Technol 2022;36:3089-96. [DOI: 10.1007/s12206-022-0539-2] [Reference Citation Analysis]
5 Hwang S, Kang M, Lee A, Bae S, Lee S, Lee SH, Lee T, Wang G, Kim T. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-30894-4] [Reference Citation Analysis]
6 Hwang YH, Kong SU, Kim CY, Lee J, Cho H, Jeong SY, Choi KC. Organic light‐emitting fibers and fabrics for truly wearable smart displays: Recent progress and future opportunities. J Soc Info Display. [DOI: 10.1002/jsid.1164] [Reference Citation Analysis]
7 Lin Z, Sun C, Zhang G, Fan E, Zhou Z, Shen Z, Yang J, Liu M, Xia Y, Si S, Yang J. Flexible triboelectric nanogenerator toward ultrahigh-frequency vibration sensing. Nano Res . [DOI: 10.1007/s12274-022-4363-x] [Reference Citation Analysis]
8 Shen Y, Wang Z, Wang Z, Wang J, Yang X, Zheng X, Chen H, Li K, Wei L, Zhang T. Thermally drawn multifunctional fibers: Toward the next generation of information technology. InfoMat. [DOI: 10.1002/inf2.12318] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Lei Y, Ding Z, Luo J, Ma Y, Chen Y, Chen Z, Xu F. Cutting of optical fibers using a Bessel profile femtosecond laser. Optics Communications 2022. [DOI: 10.1016/j.optcom.2022.128458] [Reference Citation Analysis]
10 Jin C, Bai Z. MXene-Based Textile Sensors for Wearable Applications. ACS Sens 2022;7:929-50. [PMID: 35322661 DOI: 10.1021/acssensors.2c00097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
11 Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. Adv Mater 2022;34:e2106787. [PMID: 34751987 DOI: 10.1002/adma.202106787] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Chang T, Akin S, Kim MK, Murray L, Kim B, Cho S, Huh S, Teke S, Couetil L, Jun MB, Lee CH. A Programmable Dual-Regime Spray for Large-Scale and Custom-Designed Electronic Textiles. Adv Mater 2022;34:e2108021. [PMID: 34951073 DOI: 10.1002/adma.202108021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
13 Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, Zhu S, Zhang X, Qu L. Recent Progress on Smart Fiber and Textile Based Wearable Strain Sensors: Materials, Fabrications and Applications. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00126-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
14 Zhang J, Xiang Y, Wang C, Chen Y, Tjin SC, Wei L. Recent Advances in Optical Fiber Enabled Radiation Sensors. Sensors (Basel) 2022;22:1126. [PMID: 35161870 DOI: 10.3390/s22031126] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Qi Y, Yang S, Wang J, Li L, Bai Z, Wang Y, Lv Z. Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers. Materials Today Physics 2022. [DOI: 10.1016/j.mtphys.2022.100622] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
16 Shuvo II, Shah A, Dagdeviren C. Electronic Textile Sensors for Decoding Vital Body Signals: State‐of‐the‐Art Review on Characterizations and Recommendations. Advanced Intelligent Systems. [DOI: 10.1002/aisy.202100223] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Liang X, Guo Z, Li Z, Qiu Y, Wang Z, Yuan C. A Novel Finding of Tribological and Mechanical Linking to Micro‐Convex Texture on Hydrophilic Composites Surface under Water‐Lubricating Conditions. Macro Materials & Eng. [DOI: 10.1002/mame.202100844] [Reference Citation Analysis]
18 Shukla I, Wang F, Mowlavi S, Guyomard A, Liang X, Johnson SG, Nave J. Reduced model for capillary breakup with thermal gradients: Predictions and computational validation. Physics of Fluids 2021;33:122003. [DOI: 10.1063/5.0073625] [Reference Citation Analysis]
19 Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan JA, Hu Q, Wang K, Xie Z, Liu Z, Yang Y, Liu Q, Gong M, Xiao Q, Sun S, Zhang M, Yuan X, Ni X. Optical meta-waveguides for integrated photonics and beyond. Light Sci Appl 2021;10:235. [PMID: 34811345 DOI: 10.1038/s41377-021-00655-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 23] [Article Influence: 12.0] [Reference Citation Analysis]
20 Richard I, Maurya AK, Shadman S, Masquelier E, Marthey LS, Neels A, Sorin F. Unraveling the Influence of Thermal Drawing Parameters on the Microstructure and Thermo-Mechanical Properties of Multimaterial Fibers. Small 2021;:e2101392. [PMID: 34761869 DOI: 10.1002/smll.202101392] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Hassan M, Abbas G, Li N, Afzal A, Haider Z, Ahmed S, Xu X, Pan C, Peng Z. Significance of Flexible Substrates for Wearable and Implantable Devices: Recent Advances and Perspectives. Adv Materials Technologies 2022;7:2100773. [DOI: 10.1002/admt.202100773] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
22 Lin HI, Tan HY, Liao YM, Shen KC, Shalaginov MY, Kataria M, Chen CT, Chang JW, Chen YF. A Transferrable, Adaptable, Free-Standing, and Water-Resistant Hyperbolic Metamaterial. ACS Appl Mater Interfaces 2021;13:49224-31. [PMID: 34609827 DOI: 10.1021/acsami.1c15481] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
23 Richard I, Schyrr B, Aiassa S, Carrara S, Sorin F. All-in-Fiber Electrochemical Sensing. ACS Appl Mater Interfaces 2021;13:43356-63. [PMID: 34490779 DOI: 10.1021/acsami.1c11593] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Pearson S, Feng J, del Campo A. Lighting the Path: Light Delivery Strategies to Activate Photoresponsive Biomaterials In Vivo. Adv Funct Mater 2021;31:2105989. [DOI: 10.1002/adfm.202105989] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
25 Papanastasiou DT, Charvin N, Resende J, Nguyen VH, Sekkat A, Muñoz-Rojas D, Jiménez C, Flandin L, Bellet D. Effects of non-homogeneity and oxide coating on silver nanowire networks under electrical stress: comparison between experiment and modeling. Nanotechnology 2021;32. [PMID: 34374663 DOI: 10.1088/1361-6528/ac1632] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
26 Deng X, Li Z, Liu H, Zhao Y, Zheng L, Shi X, Wang L, Fang X, Zheng H. Dramatic Responsivity Enhancement Through Concentrated H2 SO4 Treatment on PEDOT:PSS/TiO2 Heterojunction Fibrous Photodetectors. Small 2021;17:e2101674. [PMID: 34342118 DOI: 10.1002/smll.202101674] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Kang M, Kim T. Recent Advances in Fiber-Shaped Electronic Devices for Wearable Applications. Applied Sciences 2021;11:6131. [DOI: 10.3390/app11136131] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
28 Tsui HCL, Healy N. Recent progress of semiconductor optoelectronic fibers. Front Optoelectron 2021;14:383-98. [DOI: 10.1007/s12200-021-1226-0] [Reference Citation Analysis]
29 Mayorga-Burrezo P, Muñoz J, Zaoralová D, Otyepka M, Pumera M. Multiresponsive 2D Ti3C2Tx MXene via Implanting Molecular Properties. ACS Nano 2021;15:10067-75. [PMID: 34125533 DOI: 10.1021/acsnano.1c01742] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Lan L, Jiang C, Yao Y, Ping J, Ying Y. A stretchable and conductive fiber for multifunctional sensing and energy harvesting. Nano Energy 2021;84:105954. [DOI: 10.1016/j.nanoen.2021.105954] [Cited by in Crossref: 9] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
31 Chen C, Wu Y, Zhu Z, Shih WY, Shih W. Water-resistant and flexible all-inorganic perovskite nanocrystals films for white light-emitting applications. Journal of Materials Research 2021;36:1835-45. [DOI: 10.1557/s43578-021-00245-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
32 Zhu M, Wang W, Zhang C, Zhu L, Yang S. Photo-responsive Behaviors of Hydrogen-Bonded Polymer Complex Fibers Containing Azobenzene Functional Groups. Adv Fiber Mater 2021;3:172-9. [DOI: 10.1007/s42765-021-00080-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
33 Xin J, Basit A, Li S, Danto S, Tjin SC, Wei L. Inorganic Thermoelectric Fibers: A Review of Materials, Fabrication Methods, and Applications. Sensors (Basel) 2021;21:3437. [PMID: 34069287 DOI: 10.3390/s21103437] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
34 Choudhary S, Vashisht G, Malik R, Dong CL, Chen CL, Kandasami A, Annapoorni S. Photo generated charge transport studies of defects-induced shuttlecock-shaped ZnO/Ag hybrid nanostructures. Nanotechnology 2021;32. [PMID: 33857921 DOI: 10.1088/1361-6528/abf87c] [Reference Citation Analysis]
35 Xiong J, Chen J, Lee PS. Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human-Robot Interface. Adv Mater 2021;33:e2002640. [PMID: 33025662 DOI: 10.1002/adma.202002640] [Cited by in Crossref: 87] [Cited by in F6Publishing: 89] [Article Influence: 87.0] [Reference Citation Analysis]
36 Sun P, Wu D, Liu C. High-sensitivity tactile sensor based on Ti2C-PDMS sponge for wireless human-computer interaction. Nanotechnology 2021;32. [PMID: 33827054 DOI: 10.1088/1361-6528/abf59e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
37 Xiang Y, Fang L, Wu F, Zhang S, Ruan H, Luo H, Zhang H, Li W, Long X, Hu B, Zhou M. 3D Crinkled Alk‐Ti 3 C 2 MXene Based Flexible Piezoresistive Sensors with Ultra‐High Sensitivity and Ultra‐Wide Pressure Range. Adv Materials Technologies 2021;6:2001157. [DOI: 10.1002/admt.202001157] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 13.0] [Reference Citation Analysis]
38 Wang L, Zhang F, Liu Y, Leng J. Shape Memory Polymer Fibers: Materials, Structures, and Applications. Adv Fiber Mater 2022;4:5-23. [DOI: 10.1007/s42765-021-00073-z] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
39 Luo Y, Li Y, Sharma P, Shou W, Wu K, Foshey M, Li B, Palacios T, Torralba A, Matusik W. Learning human–environment interactions using conformal tactile textiles. Nat Electron 2021;4:193-201. [DOI: 10.1038/s41928-021-00558-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 44] [Article Influence: 17.0] [Reference Citation Analysis]
40 Wang Z, Chen M, Zheng Y, Zhang J, Wang Z, Yang J, Zhang Q, He B, Qi M, Zhang H, Li K, Wei L. Advanced Thermally Drawn Multimaterial Fibers: Structure-Enabled Functionalities. Advanced Devices & Instrumentation 2021;2021:1-15. [DOI: 10.34133/2021/9676470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
41 Nguyen DH, Sun JY, Lo CY, Liu JM, Tsai WS, Li MH, Yang SJ, Lin CC, Tzeng SD, Ma YR, Lin MY, Lai CC. Ultralow-Threshold Continuous-Wave Room-Temperature Crystal-Fiber/Nanoperovskite Hybrid Lasers for All-Optical Photonic Integration. Adv Mater 2021;33:e2006819. [PMID: 33576143 DOI: 10.1002/adma.202006819] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
42 Caglar B, Esposito W, Nguyen‐dang T, Laperrousaz S, Michaud V, Sorin F. Functionalized Fiber Reinforced Composites via Thermally Drawn Multifunctional Fiber Sensors. Adv Materials Technologies 2021;6:2000957. [DOI: 10.1002/admt.202000957] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 van der Elst L, Faccini de Lima C, Gokce Kurtoglu M, Koraganji VN, Zheng M, Gumennik A. 3D Printing in Fiber-Device Technology. Adv Fiber Mater 2021;3:59-75. [DOI: 10.1007/s42765-020-00056-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
44 Weldegrum GS, Singh P, Huang B, Chiang T, Tseng K, Yu C, Ji C, Chu JP. ZnO-NWs/metallic glass nanotube hybrid arrays: Fabrication and material characterization. Surface and Coatings Technology 2021;408:126785. [DOI: 10.1016/j.surfcoat.2020.126785] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
45 Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021;10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
46 Dominguez-Alfaro A, Gómez IJ, Alegret N, Mecerreyes D, Prato M. 2D and 3D Immobilization of Carbon Nanomaterials into PEDOT via Electropolymerization of a Functional Bis-EDOT Monomer. Polymers (Basel) 2021;13:436. [PMID: 33573011 DOI: 10.3390/polym13030436] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
47 Chen M, Wang Z, Li K, Wang X, Wei L. Elastic and Stretchable Functional Fibers: A Review of Materials, Fabrication Methods, and Applications. Adv Fiber Mater 2021;3:1-13. [DOI: 10.1007/s42765-020-00057-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
48 Wang J, Wang L, Feng J, Tang C, Sun X, Peng H. Long-term In Vivo Monitoring of Chemicals with Fiber Sensors. Adv Fiber Mater 2021;3:47-58. [DOI: 10.1007/s42765-020-00061-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
49 Xing Y, Xu Y, Wu Q, Wang G, Zhu M. Optoelectronic functional fibers: materials, fabrication, and application for smart textiles. J Mater Chem C 2021;9:439-55. [DOI: 10.1039/d0tc03983g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
50 Duan Y, You G, Sun K, Zhu Z, Liao X, Lv L, Tang H, Xu B, He L. Advances in wearable textile-based micro energy storage devices: structuring, application and perspective. Nanoscale Adv 2021;3:6271-93. [DOI: 10.1039/d1na00511a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
51 Guo Y, Chen S, Sun L, Yang L, Zhang L, Lou J, You Z. Degradable and Fully Recyclable Dynamic Thermoset Elastomer for 3D‐Printed Wearable Electronics. Adv Funct Mater 2021;31:2009799. [DOI: 10.1002/adfm.202009799] [Cited by in Crossref: 41] [Cited by in F6Publishing: 44] [Article Influence: 20.5] [Reference Citation Analysis]
52 Heo JS, Lee KW, Lee JH, Shin SB, Jo JW, Kim YH, Kim MG, Park SK. Highly-Sensitive Textile Pressure Sensors Enabled by Suspended-Type All Carbon Nanotube Fiber Transistor Architecture. Micromachines (Basel) 2020;11:E1103. [PMID: 33327572 DOI: 10.3390/mi11121103] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
53 Ahmed A, Hossain MM, Adak B, Mukhopadhyay S. Recent Advances in 2D MXene Integrated Smart-Textile Interfaces for Multifunctional Applications. Chem Mater 2020;32:10296-320. [DOI: 10.1021/acs.chemmater.0c03392] [Cited by in Crossref: 10] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
54 Zhang J. Phase transformation and its effect on the piezopotential in a bent zinc oxide nanowire. Nanotechnology 2021;32:075404. [PMID: 33105120 DOI: 10.1088/1361-6528/abc49f] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Xiong Y, Xu F. Multifunctional integration on optical fiber tips: challenges and opportunities. Adv Photon 2020;2. [DOI: 10.1117/1.ap.2.6.064001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 11.0] [Reference Citation Analysis]
56 Kumar M, Choi H, Lim J, Park J, Kim S, Seo H. Broadband alternating current photovoltaic effect: An application for high-performance sensing and imaging body aches. Nano Energy 2020;77:105240. [DOI: 10.1016/j.nanoen.2020.105240] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
57 Guo J, Yu Y, Sun L, Zhang Z, Zhao Y, Chai R, Shi K. Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor. Chemical Engineering Journal 2020;397:125517. [DOI: 10.1016/j.cej.2020.125517] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
58 Lin H, Wang C, Shen K, Shalaginov MY, Roy PK, Bera KP, Kataria M, Paul Inbaraj CR, Chen Y. Enhanced laser action from smart fabrics made with rollable hyperbolic metamaterials. npj Flex Electron 2020;4. [DOI: 10.1038/s41528-020-00085-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
59 Zhang J, Zhang T, Zhang H, Wang Z, Li C, Wang Z, Li K, Huang X, Chen M, Chen Z, Tian Z, Chen H, Zhao LD, Wei L. Single-Crystal SnSe Thermoelectric Fibers via Laser-Induced Directional Crystallization: From 1D Fibers to Multidimensional Fabrics. Adv Mater 2020;32:e2002702. [PMID: 32715534 DOI: 10.1002/adma.202002702] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 11.5] [Reference Citation Analysis]
60 Li N, Yang H. Construction of natural polymeric imprinted materials and their applications in water treatment: A review. J Hazard Mater 2021;403:123643. [PMID: 32846267 DOI: 10.1016/j.jhazmat.2020.123643] [Cited by in Crossref: 6] [Cited by in F6Publishing: 18] [Article Influence: 3.0] [Reference Citation Analysis]
61 Yan W, Richard I, Kurtuldu G, James ND, Schiavone G, Squair JW, Nguyen‐dang T, Das Gupta T, Qu Y, Cao JD, Ignatans R, Lacour SP, Tileli V, Courtine G, Löffler JF, Sorin F. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat Nanotechnol 2020;15:875-82. [DOI: 10.1038/s41565-020-0747-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
62 Feng Z, Yang S, Jia S, Zhang Y, Jiang S, Yu L, Li R, Song G, Wang A, Martin T, Zuo L, Jia X. Scalable, washable and lightweight triboelectric-energy-generating fibers by the thermal drawing process for industrial loom weaving. Nano Energy 2020;74:104805. [DOI: 10.1016/j.nanoen.2020.104805] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
63 Wang Z, Wu T, Wang Z, Zhang T, Chen M, Zhang J, Liu L, Qi M, Zhang Q, Yang J, Liu W, Chen H, Luo Y, Wei L. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat Commun 2020;11:3842. [PMID: 32737320 DOI: 10.1038/s41467-020-17674-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
64 Song M, Kartawira K, Hillaire KD, Li C, Eaker CB, Kiani A, Daniels KE, Dickey MD. Overcoming Rayleigh-Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via electrochemical oxidation. Proc Natl Acad Sci U S A 2020;117:19026-32. [PMID: 32727907 DOI: 10.1073/pnas.2006122117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
65 Wang J, Dong J. Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors (Basel) 2020;20:E3981. [PMID: 32709072 DOI: 10.3390/s20143981] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
66 Rana V, Gangwar P, Meena JS, Ramesh AK, Bhat KN, Das S, Singh P. A highly sensitive wearable flexible strain sensor based on polycrystalline MoS 2 thin film. Nanotechnology 2020;31:385501. [DOI: 10.1088/1361-6528/ab9970] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
67 Wei L, Tjin SC. Special Issue "Fiber Optic Sensors and Applications": An Overview. Sensors (Basel) 2020;20:E3400. [PMID: 32560254 DOI: 10.3390/s20123400] [Reference Citation Analysis]
68 Qi M, Zhang NMY, Li K, Tjin SC, Wei L. Hybrid Plasmonic Fiber-Optic Sensors. Sensors (Basel) 2020;20:E3266. [PMID: 32521770 DOI: 10.3390/s20113266] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
69 Leber A, Dong C, Chandran R, Das Gupta T, Bartolomei N, Sorin F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat Electron 2020;3:316-26. [DOI: 10.1038/s41928-020-0415-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 42] [Article Influence: 12.0] [Reference Citation Analysis]
70 Kang S, Dong G, Qiu J, Yang Z. (INVITED) Hybrid glass optical fibers-novel fiber materials for optoelectronic application. Optical Materials: X 2020;6:100051. [DOI: 10.1016/j.omx.2020.100051] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
71 Cai T, Bi T, Yang Y, Bi E, Xue S. Preparation of high-performance polymer piezoelectric thin film by electric field induction technology. Polymer 2020;196:122486. [DOI: 10.1016/j.polymer.2020.122486] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
72 Yan W, Dong C, Xiang Y, Jiang S, Leber A, Loke G, Xu W, Hou C, Zhou S, Chen M, Hu R, Shum PP, Wei L, Jia X, Sorin F, Tao X, Tao G. Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today 2020;35:168-94. [DOI: 10.1016/j.mattod.2019.11.006] [Cited by in Crossref: 50] [Cited by in F6Publishing: 58] [Article Influence: 25.0] [Reference Citation Analysis]
73 Buten C, Kortekaas L, Ravoo BJ. Design of Active Interfaces Using Responsive Molecular Components. Adv Mater 2020;32:e1904957. [PMID: 31573115 DOI: 10.1002/adma.201904957] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 8.0] [Reference Citation Analysis]
74 Li T, Kang S, Zhang X, Fu X, Feng S, Hu Z, Zhu D, Lu W. Improved hydrogen evolution at high temperature using an electro-thermal method. J Phys D: Appl Phys 2020;53:185302. [DOI: 10.1088/1361-6463/ab732b] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Huang J, Yu H, Abdalkarim SYH, Marek J, Militky J, Li Y, Yao J. Electrospun Polyethylene Glycol/Polyvinyl Alcohol Composite Nanofibrous Membranes as Shape-Stabilized Solid–Solid Phase Change Materials. Adv Fiber Mater 2020;2:167-77. [DOI: 10.1007/s42765-020-00038-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
76 Hakobyan D, Médina C, Dusserre N, Stachowicz ML, Handschin C, Fricain JC, Guillermet-Guibert J, Oliveira H. Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study. Biofabrication 2020;12:035001. [PMID: 32131058 DOI: 10.1088/1758-5090/ab7cb8] [Cited by in Crossref: 13] [Cited by in F6Publishing: 28] [Article Influence: 6.5] [Reference Citation Analysis]
77 Saleem MI, Yang S, Zhi R, Li H, Sulaman M, Chandrasekar PV, Zhang Z, Batool A, Zou B. Self-powered, all-solution processed, trilayer heterojunction perovskite-based photodetectors. Nanotechnology 2020;31:254001. [DOI: 10.1088/1361-6528/ab7de7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
78 Raty J, Wuttig M. The interplay between Peierls distortions and metavalent bonding in IV–VI compounds: comparing GeTe with related monochalcogenides. J Phys D: Appl Phys 2020;53:234002. [DOI: 10.1088/1361-6463/ab7e66] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
79 Dong B, Ma Y, Ren Z, Lee C. Recent progress in nanoplasmonics-based integrated optical micro/nano-systems. J Phys D: Appl Phys 2020;53:213001. [DOI: 10.1088/1361-6463/ab77db] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 11.5] [Reference Citation Analysis]
80 He Y, Liu R, Jiang S, Chen C, Zhu L, Shi Y, Wan Q. IGZO-based floating-gate synaptic transistors for neuromorphic computing. J Phys D: Appl Phys 2020;53:215106. [DOI: 10.1088/1361-6463/ab7bb4] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
81 Luo Q, Tang G, Sun M, Qian G, Shi Z, Qian Q, Yang Z. Single crystal tellurium semiconductor core optical fibers. Opt Mater Express 2020;10:1072. [DOI: 10.1364/ome.388187] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
82 Chen G, Li Y, Bick M, Chen J. Smart Textiles for Electricity Generation. Chem Rev 2020;120:3668-720. [DOI: 10.1021/acs.chemrev.9b00821] [Cited by in Crossref: 208] [Cited by in F6Publishing: 336] [Article Influence: 104.0] [Reference Citation Analysis]
83 Qi Q, Zhang H, Zhang P, Bao Z, Zheng W, Tian W, Zhang W, Zhou M, Sun Z. Self-assembled sandwich hollow porous carbon sphere @ MXene composites as superior LiS battery cathode hosts. 2D Mater 2020;7:025049. [DOI: 10.1088/2053-1583/ab79c1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 19] [Article Influence: 5.5] [Reference Citation Analysis]
84 Wang P, Cao Q, Wang H, Nie Y, Liu S, Peng Q. Fivefold enhancement of yield and toughness of copper nanowires via coating carbon nanotubes. Nanotechnology 2020;31:115703. [PMID: 31778980 DOI: 10.1088/1361-6528/ab5cd7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
85 Zhang B, Shi H, Hu X, Wang Y, Liu E, Fan J. A novel S-scheme MoS 2 /CdIn 2 S 4 flower-like heterojunctions with enhanced photocatalytic degradation and H 2 evolution activity. J Phys D: Appl Phys 2020;53:205101. [DOI: 10.1088/1361-6463/ab7563] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
86 Shadman S, Nguyen‐dang T, Das Gupta T, Page AG, Richard I, Leber A, Ruza J, Krishnamani G, Sorin F. Microstructured Biodegradable Fibers for Advanced Control Delivery. Adv Funct Mater 2020;30:1910283. [DOI: 10.1002/adfm.201910283] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
87 Fan S, Vu QA, Tran MD, Adhikari S, Lee YH. Transfer assembly for two-dimensional van der Waals heterostructures. 2D Mater 2020;7:022005. [DOI: 10.1088/2053-1583/ab7629] [Cited by in Crossref: 31] [Cited by in F6Publishing: 48] [Article Influence: 15.5] [Reference Citation Analysis]
88 Tao G, Chen S, Pandey SJ, Tan FA, Ebendorff‐heidepriem H, Molinari M, Abouraddy AF, Gaume RM. A carbon‐nanofiber glass composite with high electrical conductivity. Int J Appl Glass Sci 2020;11:590-600. [DOI: 10.1111/ijag.14607] [Reference Citation Analysis]
89 Lan B, Feng X, Zhang W, Yu Y, Liu J, Zhou G, Qiu J, Zhou S. Interfacial Engineering for Gradient Optical Fiber. Adv Optical Mater 2020;8:1901941. [DOI: 10.1002/adom.201901941] [Reference Citation Analysis]
90 Chen C, Li D, Wu Y, Chen C, Zhu ZG, Shih WY, Shih WH. Flexible inorganic CsPbI3 perovskite nanocrystal-PMMA composite films with enhanced stability in air and water for white light-emitting diodes. Nanotechnology 2020;31:225602. [PMID: 32053812 DOI: 10.1088/1361-6528/ab7648] [Cited by in Crossref: 11] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
91 Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. Adv Mater 2020;32:e1901958. [PMID: 31273850 DOI: 10.1002/adma.201901958] [Cited by in Crossref: 217] [Cited by in F6Publishing: 206] [Article Influence: 108.5] [Reference Citation Analysis]
92 Sun J, Su J, Ma C, Göstl R, Herrmann A, Liu K, Zhang H. Fabrication and Mechanical Properties of Engineered Protein-Based Adhesives and Fibers. Adv Mater 2020;32:e1906360. [PMID: 31805206 DOI: 10.1002/adma.201906360] [Cited by in Crossref: 51] [Cited by in F6Publishing: 55] [Article Influence: 25.5] [Reference Citation Analysis]
93 Xu B, Ma S, Xiang Y, Zhang J, Zhu M, Wei L, Tao G, Deng D. In-Fiber Structured Particles and Filament Arrays from the Perspective of Fluid Instabilities. Adv Fiber Mater 2020;2:1-12. [DOI: 10.1007/s42765-019-00024-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 5.5] [Reference Citation Analysis]
94 Yu L, Parker S, Xuan H, Zhang Y, Jiang S, Tousi M, Manteghi M, Wang A, Jia X. Flexible Multi‐Material Fibers for Distributed Pressure and Temperature Sensing. Adv Funct Mater 2020;30:1908915. [DOI: 10.1002/adfm.201908915] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
95 Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent Progress and Perspectives of Thermally Drawn Multimaterial Fiber Electronics. Adv Mater 2020;32:e1904911. [PMID: 31657053 DOI: 10.1002/adma.201904911] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 34.5] [Reference Citation Analysis]
96 Chatterjee K, Ghosh TK. 3D Printing of Textiles: Potential Roadmap to Printing with Fibers. Adv Mater 2020;32:e1902086. [PMID: 31788860 DOI: 10.1002/adma.201902086] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 24.5] [Reference Citation Analysis]
97 Feng P, Zhong M, Zhao W. Stretchable multifunctional dielectric nanocomposites based on polydimethylsiloxane mixed with metal nanoparticles. Mater Res Express 2020;7:015007. [DOI: 10.1088/2053-1591/ab5b4b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
98 Tousi MM, Zhang Y, Wan S, Yu L, Hou C, Yan N, Fink Y, Wang A, Jia X. Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber Drawing. Polymers (Basel) 2019;11:E1985. [PMID: 31810193 DOI: 10.3390/polym11121985] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
99 Zhang B, He J, Li J, Wang L, Li D. Microscale electrohydrodynamic printing of in situ reactive features for patterned ZnO nanorods. Nanotechnology 2019;30:475301. [PMID: 31437821 DOI: 10.1088/1361-6528/ab3db4] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
100 Oh JY, Lee D. Core-shell structured graphene sphere-silver nanowire hybrid filler embedded polydimethylsiloxane nanocomposites for stretchable conductor. Nanotechnology 2019;30:445706. [PMID: 31357184 DOI: 10.1088/1361-6528/ab36a7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
101 Leber A, Page AG, Yan D, Qu Y, Shadman S, Reis P, Sorin F. Compressible and Electrically Conducting Fibers for Large‐Area Sensing of Pressures. Adv Funct Mater 2020;30:1904274. [DOI: 10.1002/adfm.201904274] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
102 Sun L, Chen S, Guo Y, Song J, Zhang L, Xiao L, Guan Q, You Z. Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 2019;63:103847. [DOI: 10.1016/j.nanoen.2019.06.043] [Cited by in Crossref: 69] [Cited by in F6Publishing: 111] [Article Influence: 23.0] [Reference Citation Analysis]
103 Dong C, Page AG, Yan W, Nguyen‐dang T, Sorin F. Microstructured Multimaterial Fibers for Microfluidic Sensing. Adv Mater Technol 2019;4:1900417. [DOI: 10.1002/admt.201900417] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
104 Liu Z, Wang H, Huang P, Huang J, Zhang Y, Wang Y, Yu M, Chen S, Qi D, Wang T, Jiang Y, Chen G, Hu G, Li W, Yu J, Luo Y, Loh XJ, Liedberg B, Li G, Chen X. Highly Stable and Stretchable Conductive Films through Thermal-Radiation-Assisted Metal Encapsulation. Adv Mater 2019;31:e1901360. [PMID: 31282042 DOI: 10.1002/adma.201901360] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 16.3] [Reference Citation Analysis]
105 Page AG, Bechert M, Gallaire F, Sorin F. Unraveling radial dependency effects in fiber thermal drawing. Appl Phys Lett 2019;115:044102. [DOI: 10.1063/1.5109469] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
106 Xu X, Xie S, Zhang Y, Peng H. The Rise of Fiber Electronics. Angew Chem 2019;131:13778-88. [DOI: 10.1002/ange.201902425] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
107 Xu X, Xie S, Zhang Y, Peng H. The Rise of Fiber Electronics. Angew Chem Int Ed Engl 2019;58:13643-53. [PMID: 30986329 DOI: 10.1002/anie.201902425] [Cited by in Crossref: 34] [Cited by in F6Publishing: 47] [Article Influence: 11.3] [Reference Citation Analysis]
108 Zhang Y, Ding J, Qi B, Tao W, Wang J, Zhao C, Peng H, Shi J. Multifunctional Fibers to Shape Future Biomedical Devices. Adv Funct Mater 2019;29:1902834. [DOI: 10.1002/adfm.201902834] [Cited by in Crossref: 54] [Cited by in F6Publishing: 46] [Article Influence: 18.0] [Reference Citation Analysis]
109 Liu Q, Wu Q, Xie S, Zhao L, Chen Z, Ding Z, Li X. Uniform field electrospinning for 3D printing of fibrous configurations as strain sensors. Nanotechnology 2019;30:375301. [DOI: 10.1088/1361-6528/ab29ac] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
110 Shahriari D, Loke G, Tafel I, Park S, Chiang PH, Fink Y, Anikeeva P. Scalable Fabrication of Porous Microchannel Nerve Guidance Scaffolds with Complex Geometries. Adv Mater 2019;31:e1902021. [PMID: 31168865 DOI: 10.1002/adma.201902021] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 10.7] [Reference Citation Analysis]
111 Takemoto A, Araki T, Noda Y, Uemura T, Yoshimoto S, Abbel R, Rentrop C, van den Brand J, Sekitani T. Fine printing method of silver nanowire electrodes with alignment and accumulation. Nanotechnology 2019;30:37LT03. [PMID: 31212258 DOI: 10.1088/1361-6528/ab2aad] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
112 Faccini de Lima C, van der Elst LA, Koraganji VN, Zheng M, Gokce Kurtoglu M, Gumennik A. Towards Digital Manufacturing of Smart Multimaterial Fibers. Nanoscale Res Lett 2019;14:209. [PMID: 31214792 DOI: 10.1186/s11671-019-3031-x] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
113 Crump MR, Gong AT, Chai D, Bidinger SL, Pavinatto FJ, Reihsen TE, Sweet RM, Mackenzie JD. Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels. Nanotechnology 2019;30:364002. [DOI: 10.1088/1361-6528/ab2440] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
114 Shi W, Lv W, Sun T, Zhang B. Optoelectronic platform and technology. Frontiers Inf Technol Electronic Eng 2019;20:439-57. [DOI: 10.1631/fitee.1800451] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
115 Nguyen Dang T, Richard I, Goy E, Sordo F, Sorin F. Insights into the fabrication of sub-100 nm textured thermally drawn fibers. Journal of Applied Physics 2019;125:175301. [DOI: 10.1063/1.5089022] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
116 Pruvost M, Smit WJ, Monteux C, Poulin P, Colin A. Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. npj Flex Electron 2019;3. [DOI: 10.1038/s41528-019-0052-6] [Cited by in Crossref: 45] [Cited by in F6Publishing: 50] [Article Influence: 15.0] [Reference Citation Analysis]
117 Sordo F, Janecek ER, Qu Y, Michaud V, Stellacci F, Engmann J, Wooster TJ, Sorin F. Microstructured Fibers for the Production of Food. Adv Mater 2019;31:e1807282. [PMID: 30767332 DOI: 10.1002/adma.201807282] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
118 Li W, He K, Zhang D, Li N, Hou Y, Cheng G, Li W, Sui F, Dai Y, Luo H, Feng Y, Wei L, Li W, Zhong G, Chen M, Yang C. Flexible and High Performance Piezoresistive Pressure Sensors Based on Hierarchical Flower-Shaped SnSe 2 Nanoplates. ACS Appl Energy Mater 2019;2:2803-9. [DOI: 10.1021/acsaem.9b00147] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
119 Das Gupta T, Martin-monier L, Yan W, Le Bris A, Nguyen-dang T, Page AG, Ho K, Yesilköy F, Altug H, Qu Y, Sorin F. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nat Nanotechnol 2019;14:320-7. [DOI: 10.1038/s41565-019-0362-9] [Cited by in Crossref: 48] [Cited by in F6Publishing: 55] [Article Influence: 16.0] [Reference Citation Analysis]
120 Tang G, Qian G, Shi Z, Liu Y, Huang B, He Y, Jiang L, Sun M, Qian Q, Yang Z. Heavily Tb 3+ doped multi-component phosphate glass fibers for green fiber lasers. Opt Mater Express 2019;9:362. [DOI: 10.1364/ome.9.000362] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
121 Xian H, Liu M, Wang X, Ye F, Wen P, Bai H, Liu Y, Wang W. Flexible and stretchable metallic glass micro- and nano-structures of tunable properties. Nanotechnology 2019;30:085705. [PMID: 30523953 DOI: 10.1088/1361-6528/aaf538] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
122 Yan W, Burgos-caminal A, Das Gupta T, Moser J, Sorin F. Direct Synthesis of Selenium Nanowire Mesh on a Solid Substrate and Insights into Ultrafast Photocarrier Dynamics. J Phys Chem C 2018;122:25134-41. [DOI: 10.1021/acs.jpcc.8b08942] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]