BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Qu Y, Nguyen-Dang T, Page AG, Yan W, Das Gupta T, Rotaru GM, Rossi RM, Favrod VD, Bartolomei N, Sorin F. Superelastic Multimaterial Electronic and Photonic Fibers and Devices via Thermal Drawing. Adv Mater 2018;30:e1707251. [PMID: 29799143 DOI: 10.1002/adma.201707251] [Cited by in Crossref: 80] [Cited by in F6Publishing: 71] [Article Influence: 20.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang H, Yue Y, Zou W, Pan Y, Guo X. The stretchable carbon black-based strain fiber with a remarkable linearity in a wide sensing range. International Journal of Smart and Nano Materials. [DOI: 10.1080/19475411.2022.2107112] [Reference Citation Analysis]
2 Yang Y, Duan S, Zhao H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. Nanoscale 2022. [PMID: 35912705 DOI: 10.1039/d2nr02475f] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Li Y, Gao Y, Lan L, Zhang Q, Wei L, Shan M, Guo L, Wang F, Mao J, Zhang Z, Wang L. Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel. npj Flex Electron 2022;6. [DOI: 10.1038/s41528-022-00176-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
4 Ma S, Wang Z, Zhu Y, Tang Y, Fan G, Ma B, Ye T, Wei L. Micro/nanofiber fabrication technologies for wearable sensors: a review. J Micromech Microeng 2022;32:064002. [DOI: 10.1088/1361-6439/ac6b7e] [Reference Citation Analysis]
5 Shen Y, Wang Z, Wang Z, Wang J, Yang X, Zheng X, Chen H, Li K, Wei L, Zhang T. Thermally drawn multifunctional fibers: Toward the next generation of information technology. InfoMat. [DOI: 10.1002/inf2.12318] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Marion JS, Gupta N, Cheung H, Monir K, Anikeeva P, Fink Y. Thermally Drawn Highly Conductive Fibers with Controlled Elasticity. Adv Mater 2022;34:e2201081. [PMID: 35278246 DOI: 10.1002/adma.202201081] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Gao J, Fan Y, Zhang Q, Luo L, Hu X, Li Y, Song J, Jiang H, Gao X, Zheng L, Zhao W, Wang Z, Ai W, Wei Y, Lu Q, Xu M, Wang Y, Song W, Wang X, Huang W. Ultra-Robust and Extensible Fibrous Mechanical Sensors for Wearable Smart Healthcare. Adv Mater 2022;34:e2107511. [PMID: 35306697 DOI: 10.1002/adma.202107511] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 11.0] [Reference Citation Analysis]
8 Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, Zhu S, Zhang X, Qu L. Recent Progress on Smart Fiber and Textile Based Wearable Strain Sensors: Materials, Fabrications and Applications. Adv Fiber Mater . [DOI: 10.1007/s42765-021-00126-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
9 Zhu Y, Chen X, Chu K, Wang X, Hu Z, Su H. Carbon Black/PDMS Based Flexible Capacitive Tactile Sensor for Multi-Directional Force Sensing. Sensors (Basel) 2022;22:628. [PMID: 35062588 DOI: 10.3390/s22020628] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
10 Richard I, Maurya AK, Shadman S, Masquelier E, Marthey LS, Neels A, Sorin F. Unraveling the Influence of Thermal Drawing Parameters on the Microstructure and Thermo-Mechanical Properties of Multimaterial Fibers. Small 2021;:e2101392. [PMID: 34761869 DOI: 10.1002/smll.202101392] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Iwama T, Guo Y, Handa S, Y. Inoue K, Yoshinobu T, Sorin F, Shiku H. Thermally‐Drawn Multi‐Electrode Fibers for Bipolar Electrochemistry and Magnified Electrochemical Imaging. Adv Materials Technologies 2022;7:2101066. [DOI: 10.1002/admt.202101066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Chen F, Huang Q, Zheng Z. Permeable Conductors for Wearable and On‐Skin Electronics. Small Structures 2022;3:2100135. [DOI: 10.1002/sstr.202100135] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
13 Yao M, Wu B, Feng X, Sun S, Wu P. A Highly Robust Ionotronic Fiber with Unprecedented Mechanomodulation of Ionic Conduction. Adv Mater 2021;33:e2103755. [PMID: 34477247 DOI: 10.1002/adma.202103755] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
14 Richard I, Schyrr B, Aiassa S, Carrara S, Sorin F. All-in-Fiber Electrochemical Sensing. ACS Appl Mater Interfaces 2021;13:43356-63. [PMID: 34490779 DOI: 10.1021/acsami.1c11593] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Yu D, Xue Z, Mu T. Eutectics: formation, properties, and applications. Chem Soc Rev 2021;50:8596-638. [PMID: 34138999 DOI: 10.1039/d1cs00404b] [Cited by in Crossref: 5] [Cited by in F6Publishing: 50] [Article Influence: 5.0] [Reference Citation Analysis]
16 Martin-Monier L, Piveteau PL, Sorin F. Novel insights into the design of stretchable electrical systems. Sci Adv 2021;7:eabf7558. [PMID: 34215583 DOI: 10.1126/sciadv.abf7558] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Zhang Y, Wang H, Lu H, Li S, Zhang Y. Electronic fibers and textiles: Recent progress and perspective. iScience 2021;24:102716. [PMID: 34308283 DOI: 10.1016/j.isci.2021.102716] [Cited by in Crossref: 1] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
18 Jakubowski K, Huang C, Boesel LF, Hufenus R, Heuberger M. Recent advances in photoluminescent polymer optical fibers. Current Opinion in Solid State and Materials Science 2021;25:100912. [DOI: 10.1016/j.cossms.2021.100912] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
19 Zheng L, Zhu M, Wu B, Li Z, Sun S, Wu P. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci Adv 2021;7:eabg4041. [PMID: 34049879 DOI: 10.1126/sciadv.abg4041] [Cited by in Crossref: 8] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
20 Yun G, Tang S, Lu H, Zhang S, Dickey MD, Li W. Hybrid‐Filler Stretchable Conductive Composites: From Fabrication to Application. Small Science 2021;1:2000080. [DOI: 10.1002/smsc.202000080] [Cited by in Crossref: 18] [Cited by in F6Publishing: 30] [Article Influence: 18.0] [Reference Citation Analysis]
21 Shabahang S, Clouser F, Shabahang F, Yun S. Single‐Mode, 700%‐Stretchable, Elastic Optical Fibers Made of Thermoplastic Elastomers. Adv Optical Mater 2021;9:2100270. [DOI: 10.1002/adom.202100270] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
22 Lee J, Ihle SJ, Pellegrino GS, Kim H, Yea J, Jeon C, Son H, Jin C, Eberli D, Schmid F, Zambrano BL, Renz AF, Forró C, Choi H, Jang K, Küng R, Vörös J. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat Electron 2021;4:291-301. [DOI: 10.1038/s41928-021-00557-1] [Cited by in Crossref: 10] [Cited by in F6Publishing: 24] [Article Influence: 10.0] [Reference Citation Analysis]
23 Wang Z, Chen M, Zheng Y, Zhang J, Wang Z, Yang J, Zhang Q, He B, Qi M, Zhang H, Li K, Wei L. Advanced Thermally Drawn Multimaterial Fibers: Structure-Enabled Functionalities. Advanced Devices & Instrumentation 2021;2021:1-15. [DOI: 10.34133/2021/9676470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Chen M, Wang Z, Zhang Q, Wang Z, Liu W, Chen M, Wei L. Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nat Commun 2021;12:1416. [PMID: 33658511 DOI: 10.1038/s41467-021-21729-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
25 Caglar B, Esposito W, Nguyen‐dang T, Laperrousaz S, Michaud V, Sorin F. Functionalized Fiber Reinforced Composites via Thermally Drawn Multifunctional Fiber Sensors. Adv Materials Technologies 2021;6:2000957. [DOI: 10.1002/admt.202000957] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Xuan H, Guan Q, Zhang L, You Z. Thermoplastic Photoheating Polymer Enables 3D‐Printed Self‐Healing Light‐Propelled Smart Devices. Adv Funct Mater 2021;31:2009568. [DOI: 10.1002/adfm.202009568] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
27 Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021;10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
28 Chen M, Wang Z, Li K, Wang X, Wei L. Elastic and Stretchable Functional Fibers: A Review of Materials, Fabrication Methods, and Applications. Adv Fiber Mater 2021;3:1-13. [DOI: 10.1007/s42765-020-00057-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
29 Zhang Y, Li X, Kim J, Tong Y, Thompson EG, Jiang S, Feng Z, Yu L, Wang J, Ha DS, Sontheimer H, Johnson BN, Jia X. Thermally Drawn Stretchable Electrical and Optical Fiber Sensors for Multimodal Extreme Deformation Sensing. Adv Optical Mater 2021;9:2001815. [DOI: 10.1002/adom.202001815] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
30 Xing Y, Xu Y, Wu Q, Wang G, Zhu M. Optoelectronic functional fibers: materials, fabrication, and application for smart textiles. J Mater Chem C 2021;9:439-55. [DOI: 10.1039/d0tc03983g] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
31 Lee Y, Canales A, Loke G, Kanik M, Fink Y, Anikeeva P. Selectively Micro-Patternable Fibers via In-Fiber Photolithography. ACS Cent Sci 2020;6:2319-25. [PMID: 33376793 DOI: 10.1021/acscentsci.0c01188] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
32 Pancaldi L, Dirix P, Fanelli A, Lima AM, Stergiopulos N, Mosimann PJ, Ghezzi D, Sakar MS. Flow driven robotic navigation of microengineered endovascular probes. Nat Commun 2020;11:6356. [PMID: 33353938 DOI: 10.1038/s41467-020-20195-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 19] [Article Influence: 2.5] [Reference Citation Analysis]
33 Sanchez V, Walsh CJ, Wood RJ. Textile Technology for Soft Robotic and Autonomous Garments. Adv Funct Mater 2021;31:2008278. [DOI: 10.1002/adfm.202008278] [Cited by in Crossref: 48] [Cited by in F6Publishing: 38] [Article Influence: 24.0] [Reference Citation Analysis]
34 Frank JA, Antonini MJ, Chiang PH, Canales A, Konrad DB, Garwood IC, Rajic G, Koehler F, Fink Y, Anikeeva P. In Vivo Photopharmacology Enabled by Multifunctional Fibers. ACS Chem Neurosci 2020;11:3802-13. [PMID: 33108719 DOI: 10.1021/acschemneuro.0c00577] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
35 Wang C, Wu B, Sun S, Wu P. Interface Deformable, Thermally Sensitive Hydrogel–Elastomer Hybrid Fiber for Versatile Underwater Sensing. Adv Mater Technol 2020;5:2000515. [DOI: 10.1002/admt.202000515] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
36 Yan W, Richard I, Kurtuldu G, James ND, Schiavone G, Squair JW, Nguyen‐dang T, Das Gupta T, Qu Y, Cao JD, Ignatans R, Lacour SP, Tileli V, Courtine G, Löffler JF, Sorin F. Structured nanoscale metallic glass fibres with extreme aspect ratios. Nat Nanotechnol 2020;15:875-82. [DOI: 10.1038/s41565-020-0747-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
37 Yang Q, Cheng Y, Li Y, Zhou Z, Liang J, Zhao X, Hu Z, Peng R, Yang H, Liu M. Voltage Control of Skyrmion Bubbles for Topological Flexible Spintronic Devices. Adv Electron Mater 2020;6:2000246. [DOI: 10.1002/aelm.202000246] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
38 Keshavarz M, Wales DJ, Seichepine F, Abdelaziz MEMK, Kassanos P, Li Q, Temelkuran B, Shen H, Yang GZ. Induced neural stem cell differentiation on a drawn fiber scaffold-toward peripheral nerve regeneration. Biomed Mater 2020;15:055011. [PMID: 32330920 DOI: 10.1088/1748-605X/ab8d12] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
39 Wang J, Dong J. Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. Sensors (Basel) 2020;20:E3981. [PMID: 32709072 DOI: 10.3390/s20143981] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
40 Souri H, Banerjee H, Jusufi A, Radacsi N, Stokes AA, Park I, Sitti M, Amjadi M. Wearable and Stretchable Strain Sensors: Materials, Sensing Mechanisms, and Applications. Advanced Intelligent Systems 2020;2:2000039. [DOI: 10.1002/aisy.202000039] [Cited by in Crossref: 51] [Cited by in F6Publishing: 105] [Article Influence: 25.5] [Reference Citation Analysis]
41 Leber A, Dong C, Chandran R, Das Gupta T, Bartolomei N, Sorin F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat Electron 2020;3:316-26. [DOI: 10.1038/s41928-020-0415-y] [Cited by in Crossref: 24] [Cited by in F6Publishing: 42] [Article Influence: 12.0] [Reference Citation Analysis]
42 Yan W, Dong C, Xiang Y, Jiang S, Leber A, Loke G, Xu W, Hou C, Zhou S, Chen M, Hu R, Shum PP, Wei L, Jia X, Sorin F, Tao X, Tao G. Thermally drawn advanced functional fibers: New frontier of flexible electronics. Materials Today 2020;35:168-94. [DOI: 10.1016/j.mattod.2019.11.006] [Cited by in Crossref: 50] [Cited by in F6Publishing: 58] [Article Influence: 25.0] [Reference Citation Analysis]
43 Shadman S, Nguyen‐dang T, Das Gupta T, Page AG, Richard I, Leber A, Ruza J, Krishnamani G, Sorin F. Microstructured Biodegradable Fibers for Advanced Control Delivery. Adv Funct Mater 2020;30:1910283. [DOI: 10.1002/adfm.201910283] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
44 Lee J, Llerena Zambrano B, Woo J, Yoon K, Lee T. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications. Adv Mater 2020;32:e1902532. [PMID: 31495991 DOI: 10.1002/adma.201902532] [Cited by in Crossref: 106] [Cited by in F6Publishing: 102] [Article Influence: 53.0] [Reference Citation Analysis]
45 Yu L, Parker S, Xuan H, Zhang Y, Jiang S, Tousi M, Manteghi M, Wang A, Jia X. Flexible Multi‐Material Fibers for Distributed Pressure and Temperature Sensing. Adv Funct Mater 2020;30:1908915. [DOI: 10.1002/adfm.201908915] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
46 Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent Progress and Perspectives of Thermally Drawn Multimaterial Fiber Electronics. Adv Mater 2020;32:e1904911. [PMID: 31657053 DOI: 10.1002/adma.201904911] [Cited by in Crossref: 69] [Cited by in F6Publishing: 71] [Article Influence: 34.5] [Reference Citation Analysis]
47 Zhao Y, Li Y, Zhou Z, Peng R, Zhu S, Yao M, Peng B, Zhao Y, Cheng Y, Tian B, Hu Z, Ye Z, Jiang Z, Liu M. Low-damping flexible Y 3 Fe 5 O 12 thin films for tunable RF/microwave processors. Mater Horiz 2020;7:1558-65. [DOI: 10.1039/c9mh01782h] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
48 Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 2020;8:6624-66. [DOI: 10.1039/d0tb00872a] [Cited by in Crossref: 9] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
49 Feng P, Zhong M, Zhao W. Stretchable multifunctional dielectric nanocomposites based on polydimethylsiloxane mixed with metal nanoparticles. Mater Res Express 2020;7:015007. [DOI: 10.1088/2053-1591/ab5b4b] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
50 Liu J, Gu L, Cui N, Xu Q, Qin Y, Yang R. Fabric-Based Triboelectric Nanogenerators. Research (Wash D C) 2019;2019:1091632. [PMID: 31912024 DOI: 10.34133/2019/1091632] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
51 Oh JY, Lee D. Core-shell structured graphene sphere-silver nanowire hybrid filler embedded polydimethylsiloxane nanocomposites for stretchable conductor. Nanotechnology 2019;30:445706. [PMID: 31357184 DOI: 10.1088/1361-6528/ab36a7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
52 Leber A, Page AG, Yan D, Qu Y, Shadman S, Reis P, Sorin F. Compressible and Electrically Conducting Fibers for Large‐Area Sensing of Pressures. Adv Funct Mater 2020;30:1904274. [DOI: 10.1002/adfm.201904274] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
53 Pissadakis S. Lab-in-a-fiber sensors: A review. Microelectronic Engineering 2019;217:111105. [DOI: 10.1016/j.mee.2019.111105] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 5.7] [Reference Citation Analysis]
54 Dong C, Page AG, Yan W, Nguyen‐dang T, Sorin F. Microstructured Multimaterial Fibers for Microfluidic Sensing. Adv Mater Technol 2019;4:1900417. [DOI: 10.1002/admt.201900417] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
55 Kumari P, Verma SK, Natarajan K, Ansari SN, Saini AK, Mobin SM. Design and Synthesis of a New Facile Ligand in a Dual Role: Mechanically Elastic Crystal and Selective Mitochondria Target. Crystal Growth & Design 2019;19:5483-90. [DOI: 10.1021/acs.cgd.9b00846] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
56 Frank JA, Antonini MJ, Anikeeva P. Next-generation interfaces for studying neural function. Nat Biotechnol 2019;37:1013-23. [PMID: 31406326 DOI: 10.1038/s41587-019-0198-8] [Cited by in Crossref: 54] [Cited by in F6Publishing: 69] [Article Influence: 18.0] [Reference Citation Analysis]
57 Ghebrebrhan M, Loke GZJ, Fink Y. Fabrication and measurement of 3D printed retroreflective fibers. Opt Mater Express 2019;9:3432. [DOI: 10.1364/ome.9.003432] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
58 Page AG, Bechert M, Gallaire F, Sorin F. Unraveling radial dependency effects in fiber thermal drawing. Appl Phys Lett 2019;115:044102. [DOI: 10.1063/1.5109469] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
59 Xu X, Xie S, Zhang Y, Peng H. The Rise of Fiber Electronics. Angew Chem 2019;131:13778-88. [DOI: 10.1002/ange.201902425] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
60 Xu X, Xie S, Zhang Y, Peng H. The Rise of Fiber Electronics. Angew Chem Int Ed Engl 2019;58:13643-53. [PMID: 30986329 DOI: 10.1002/anie.201902425] [Cited by in Crossref: 34] [Cited by in F6Publishing: 47] [Article Influence: 11.3] [Reference Citation Analysis]
61 Liu Q, Wu Q, Xie S, Zhao L, Chen Z, Ding Z, Li X. Uniform field electrospinning for 3D printing of fibrous configurations as strain sensors. Nanotechnology 2019;30:375301. [DOI: 10.1088/1361-6528/ab29ac] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
62 Crump MR, Gong AT, Chai D, Bidinger SL, Pavinatto FJ, Reihsen TE, Sweet RM, Mackenzie JD. Monolithic 3D printing of embeddable and highly stretchable strain sensors using conductive ionogels. Nanotechnology 2019;30:364002. [DOI: 10.1088/1361-6528/ab2440] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
63 Yang Q, Hu Z, Zhang Y, Su W, Cheng Y, Peng B, Wu J, Zhou Z, He Y, Cui W, Wang Z, Liu M. Voltage Control of Perpendicular Exchange Bias in Multiferroic Heterostructures. Adv Electron Mater 2019;5:1900192. [DOI: 10.1002/aelm.201900192] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
64 Jao D, Beachley VZ. Continuous Dual-Track Fabrication of Polymer Micro-/Nanofibers Based on Direct Drawing. ACS Macro Lett 2019;8:588-95. [PMID: 35619372 DOI: 10.1021/acsmacrolett.9b00167] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 3.7] [Reference Citation Analysis]
65 Sordo F, Janecek ER, Qu Y, Michaud V, Stellacci F, Engmann J, Wooster TJ, Sorin F. Microstructured Fibers for the Production of Food. Adv Mater 2019;31:e1807282. [PMID: 30767332 DOI: 10.1002/adma.201807282] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
66 Park S, Loke G, Fink Y, Anikeeva P. Flexible fiber-based optoelectronics for neural interfaces. Chem Soc Rev 2019;48:1826-52. [PMID: 30815657 DOI: 10.1039/c8cs00710a] [Cited by in Crossref: 42] [Cited by in F6Publishing: 52] [Article Influence: 14.0] [Reference Citation Analysis]
67 Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles. Adv Mater 2019;31:e1802348. [PMID: 30272829 DOI: 10.1002/adma.201802348] [Cited by in Crossref: 128] [Cited by in F6Publishing: 122] [Article Influence: 42.7] [Reference Citation Analysis]
68 Liu H, Hsieh H, Chen J, Shih C, Lee W, Chiang Y, Chen W. Fabrication and Application of Highly Stretchable Conductive Fiber-Based Electrode of Epoxy/NBR Electrospun Fibers Spray-Coated with AgNW/PU Composites. Macromol Chem Phys 2019;220:1800387. [DOI: 10.1002/macp.201800387] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
69 Mechael SS, Wu Y, Schlingman K, Carmichael TB. Stretchable metal films. Flex Print Electron 2018;3:043001. [DOI: 10.1088/2058-8585/aae8c0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
70 Ahn JM, Lee JS, Um SG, Rho BS, Lee KB, Park SG, Kim HJ, Lee Y, Chi YM, Yoon YE, Jo SH, Kim ME, Pi KB. Mussel adhesive Protein-conjugated Vitronectin (fp-151-VT) Induces Anti-inflammatory Activity on LPS-stimulated Macrophages and UVB-irradiated Keratinocytes. Immunol Invest 2019;48:242-54. [PMID: 30188221 DOI: 10.1080/08820139.2018.1506476] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
71 Zhang Q, Li K, Yang J, Qu G, Ma N, Guo H. Experimental and computational investigations on the high binding-selectivity of pyrimidine derivatives by a pillar[5]arene. Supramolecular Chemistry 2018;30:977-81. [DOI: 10.1080/10610278.2018.1510123] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]