1 |
Kim S, Hsiao YH, Lee Y, Zhu W, Ren Z, Niroui F, Chen Y. Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots. Sci Robot 2023;8:eadf4278. [PMID: 36921017 DOI: 10.1126/scirobotics.adf4278] [Reference Citation Analysis]
|
2 |
Wei X, Zhao H, Yin L, Miao Z, Ding X, Wang Q, Bai J. The improved low‐field electro‐actuation of dielectric elastomer composites regulated by entirely‐inorganic BaTiO 3 @ TiO 2 core‐shell construction. J of Applied Polymer Sci 2023. [DOI: 10.1002/app.53582] [Reference Citation Analysis]
|
3 |
Palmić TB, Slavič J. Design principles for a single-process 3D-printed stacked dielectric actuators — Theory and experiment. International Journal of Mechanical Sciences 2023. [DOI: 10.1016/j.ijmecsci.2023.108128] [Reference Citation Analysis]
|
4 |
Alibakhshi A, Jafari H, Rostam-alilou A, Bodaghi M, Sedaghati R. Nonlinear Vibration Behaviors of Dielectric Elastomer Membranes under Multi-Frequency Excitations. Sensors and Actuators A: Physical 2023. [DOI: 10.1016/j.sna.2023.114171] [Reference Citation Analysis]
|
5 |
Lu H, Yang D. Enhanced actuation performance of silicone rubber via the synergistic effect of polyaniline particles and silicone oil. Composites Part A: Applied Science and Manufacturing 2022;163:107200. [DOI: 10.1016/j.compositesa.2022.107200] [Reference Citation Analysis]
|
6 |
Wei Q, Yang D. Improved actuation performance and dielectric strength of natural rubber composites by introducing covalent bonds between dielectric filler and polymeric chains. Polymer 2022;257:125282. [DOI: 10.1016/j.polymer.2022.125282] [Reference Citation Analysis]
|
7 |
Beregoi M, Beaumont S, Evanghelidis A, Otero TF, Enculescu I. Bioinspired polypyrrole based fibrillary artificial muscle with actuation and intrinsic sensing capabilities. Sci Rep 2022;12:15019. [PMID: 36056150 DOI: 10.1038/s41598-022-18955-6] [Reference Citation Analysis]
|
8 |
Cohen AJ, Kollosche M, Yuen MC, Lee D, Clarke DR, Wood RJ. Batch‐Sprayed and Stamp‐Transferred Electrodes: A New Paradigm for Scalable Fabrication of Multilayer Dielectric Elastomer Actuators. Adv Funct Materials. [DOI: 10.1002/adfm.202205394] [Reference Citation Analysis]
|
9 |
Jing Z, Li Q, Su W, Chen Y. Dielectric Elastomer-Driven Bionic Inchworm Soft Robot Realizes Forward and Backward Movement and Jump. Actuators 2022;11:227. [DOI: 10.3390/act11080227] [Reference Citation Analysis]
|
10 |
Lai Z, Xu J, Bowen CR, Zhou S. Self-powered and self-sensing devices based on human motion. Joule 2022;6:1501-65. [DOI: 10.1016/j.joule.2022.06.013] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. Materials (Basel) 2022;15:1037. [PMID: 35160982 DOI: 10.3390/ma15031037] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
|
12 |
Yu L, Hu T, Yang D, Wei Q. Enhanced electromechanical performance of natural rubber dielectric elastomers achieved by in situ synthesis of silver nanoparticles on TiO 2 nanoparticles. IET Nanodielectrics 2022;5:39-49. [DOI: 10.1049/nde2.12030] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|
13 |
Cheng J, Liu J, Wu B, Liu Z, Li M, Wang X, Tang P, Wang Z. Graphene and its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings. Front Bioeng Biotechnol 2021;9:734688. [PMID: 34660555 DOI: 10.3389/fbioe.2021.734688] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
|