BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Faroni A, Workman VL, Saiani A, Reid AJ. Self-Assembling Peptide Hydrogel Matrices Improve the Neurotrophic Potential of Human Adipose-Derived Stem Cells. Adv Healthc Mater 2019;8:e1900410. [PMID: 31348622 DOI: 10.1002/adhm.201900410] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Blache U, Ford EM, Ha B, Rijns L, Chaudhuri O, Dankers PYW, Kloxin AM, Snedeker JG, Gentleman E. Engineered hydrogels for mechanobiology. Nat Rev Methods Primers 2022;2:98. [DOI: 10.1038/s43586-022-00179-7] [Reference Citation Analysis]
2 He T, Qiao S, Ma C, Peng Z, Wu Z, Ma C, Han L, Deng Q, Zhang T, Zhu Y, Pan G. FEK self-assembled peptide hydrogels facilitate primary hepatocytes culture and pharmacokinetics screening. J Biomed Mater Res B Appl Biomater 2022. [PMID: 35301798 DOI: 10.1002/jbm.b.35056] [Reference Citation Analysis]
3 Chen S, Ikemoto T, Tokunaga T, Okikawa S, Miyazaki K, Tokuda K, Yamada S, Saito Y, Imura S, Morine Y, Shimada M. Effective in vitro differentiation of adipose-derived stem cells into Schwann-like cells with folic acid supplementation. J Med Invest 2021;68:347-53. [PMID: 34759157 DOI: 10.2152/jmi.68.347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Lopez-Silva TL, Schneider JP. From structure to application: Progress and opportunities in peptide materials development. Curr Opin Chem Biol 2021;64:131-44. [PMID: 34329941 DOI: 10.1016/j.cbpa.2021.06.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
5 Olayanju A, Miller AF, Ansari T, Goldring CE. Self-Assembling Peptide Hydrogels - PeptiGels® as a Platform for Hepatic Organoid Culture.. [DOI: 10.1101/2021.03.01.433333] [Reference Citation Analysis]
6 Banerjee A, Hamley IW. Introduction to peptide soft materials. Soft Matter 2020;16:9998-10000. [PMID: 33150351 DOI: 10.1039/d0sm90212h] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Rhode SC, Beier JP, Ruhl T. Adipose tissue stem cells in peripheral nerve regeneration-In vitro and in vivo. J Neurosci Res 2021;99:545-60. [PMID: 33070351 DOI: 10.1002/jnr.24738] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
8 Chiesa I, Ligorio C, Bonatti AF, De Acutis A, Smith AM, Saiani A, Vozzi G, De Maria C. Modeling the Three-Dimensional Bioprinting Process of β-Sheet Self-Assembling Peptide Hydrogel Scaffolds. Front Med Technol 2020;2:571626. [DOI: 10.3389/fmedt.2020.571626] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
9 Palombella S, Guiotto M, Higgins GC, Applegate LL, Raffoul W, Cherubino M, Hart A, Riehle MO, di Summa PG. Human platelet lysate as a potential clinical-translatable supplement to support the neurotrophic properties of human adipose-derived stem cells. Stem Cell Res Ther 2020;11:432. [PMID: 33023632 DOI: 10.1186/s13287-020-01949-4] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
10 Burgess KA, Frati C, Meade K, Gao J, Castillo Diaz L, Madeddu D, Graiani G, Cavalli S, Miller AF, Oceandy D, Quaini F, Saiani A. Functionalised peptide hydrogel for the delivery of cardiac progenitor cells. Mater Sci Eng C Mater Biol Appl 2021;119:111539. [PMID: 33321610 DOI: 10.1016/j.msec.2020.111539] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
11 Lopez-Silva TL, Cristobal CD, Edwin Lai CS, Leyva-Aranda V, Lee HK, Hartgerink JD. Self-assembling multidomain peptide hydrogels accelerate peripheral nerve regeneration after crush injury. Biomaterials 2021;265:120401. [PMID: 33002786 DOI: 10.1016/j.biomaterials.2020.120401] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
12 Hu X, Wang X, Xu Y, Li L, Liu J, He Y, Zou Y, Yu L, Qiu X, Guo J. Electric Conductivity on Aligned Nanofibers Facilitates the Transdifferentiation of Mesenchymal Stem Cells into Schwann Cells and Regeneration of Injured Peripheral Nerve. Adv Healthc Mater 2020;9:e1901570. [PMID: 32338461 DOI: 10.1002/adhm.201901570] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
13 Li T, Chang J, Zhu Y, Wu C. 3D Printing of Bioinspired Biomaterials for Tissue Regeneration. Adv Healthc Mater 2020;:e2000208. [PMID: 32338464 DOI: 10.1002/adhm.202000208] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
14 Wychowaniec JK, Smith AM, Ligorio C, Mykhaylyk OO, Miller AF, Saiani A. Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels. Biomacromolecules 2020;21:2285-97. [PMID: 32275138 DOI: 10.1021/acs.biomac.0c00229] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
15 Xing X, Han S, Cheng G, Ni Y, Li Z, Li Z. Proteomic Analysis of Exosomes from Adipose-Derived Mesenchymal Stem Cells: A Novel Therapeutic Strategy for Tissue Injury. Biomed Res Int 2020;2020:6094562. [PMID: 32190672 DOI: 10.1155/2020/6094562] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
16 Zhang Y, Venkateswaran S, Higuera GA, Nath S, Shpak G, Matray J, Fratila-Apachitei LE, Zadpoor AA, Kushner SA, Bradley M, De Zeeuw CI. Synthetic Polymers Provide a Robust Substrate for Functional Neuron Culture. Adv Healthc Mater 2020;9:e1901347. [PMID: 31943855 DOI: 10.1002/adhm.201901347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]