BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mathur D, Medintz IL. The Growing Development of DNA Nanostructures for Potential Healthcare-Related Applications. Adv Healthc Mater 2019;8:e1801546. [PMID: 30843670 DOI: 10.1002/adhm.201801546] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 13.7] [Reference Citation Analysis]
Number Citing Articles
1 Joseph J, Baumann KN, Postigo A, Bollepalli L, Bohndiek SE, Hernández-Ainsa S. DNA-Based Nanocarriers to Enhance the Optoacoustic Contrast of Tumors In Vivo. Adv Healthc Mater 2021;10:e2001739. [PMID: 33191661 DOI: 10.1002/adhm.202001739] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Jiang W, Lu K, Gao M, Wang Z, Gu Y, Ma Y. Transformable DNA octahedron for remodeling tumor immune microenvironment with alleviated toxicity. Chemical Engineering Journal 2022;440:135813. [DOI: 10.1016/j.cej.2022.135813] [Reference Citation Analysis]
3 Riccardi C, Napolitano E, Platella C, Musumeci D, Melone MAB, Montesarchio D. Anti-VEGF DNA-based aptamers in cancer therapeutics and diagnostics. Med Res Rev 2021;41:464-506. [PMID: 33038031 DOI: 10.1002/med.21737] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
4 Li X, Yang F, Gan C, Yuan R, Xiang Y. 3D DNA Scaffold-Assisted Dual Intramolecular Amplifications for Multiplexed and Sensitive MicroRNA Imaging in Living Cells. Anal Chem 2021;93:9912-9. [PMID: 34232629 DOI: 10.1021/acs.analchem.1c02124] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Burgos-Morales O, Gueye M, Lacombe L, Nowak C, Schmachtenberg R, Hörner M, Jerez-Longres C, Mohsenin H, Wagner HJ, Weber W. Synthetic biology as driver for the biologization of materials sciences. Mater Today Bio 2021;11:100115. [PMID: 34195591 DOI: 10.1016/j.mtbio.2021.100115] [Reference Citation Analysis]
6 Deshpande S, Yang Y, Chilkoti A, Zauscher S. Enzymatic synthesis and modification of high molecular weight DNA using terminal deoxynucleotidyl transferase. Methods Enzymol 2019;627:163-88. [PMID: 31630739 DOI: 10.1016/bs.mie.2019.07.044] [Reference Citation Analysis]
7 Keller A, Linko V. Challenges and Perspectives of DNA Nanostructures in Biomedicine. Angew Chem Int Ed Engl 2020;59:15818-33. [PMID: 32112664 DOI: 10.1002/anie.201916390] [Cited by in Crossref: 49] [Cited by in F6Publishing: 37] [Article Influence: 24.5] [Reference Citation Analysis]
8 Chiriboga M, Green CM, Hastman DA, Mathur D, Wei Q, Díaz SA, Medintz IL, Veneziano R. Rapid DNA origami nanostructure detection and classification using the YOLOv5 deep convolutional neural network. Sci Rep 2022;12:3871. [PMID: 35264624 DOI: 10.1038/s41598-022-07759-3] [Reference Citation Analysis]
9 Green CM, Mathur D, Medintz IL. Understanding the fate of DNA nanostructures inside the cell. J Mater Chem B 2020;8:6170-8. [DOI: 10.1039/d0tb00395f] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
10 Obuobi S, Mayandi V, Nor NAM, Lee BJ, Lakshminarayanan R, Ee PLR. Nucleic acid peptide nanogels for the treatment of bacterial keratitis. Nanoscale 2020;12:17411-25. [DOI: 10.1039/d0nr03095c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
11 Weiden J, Bastings MM. DNA origami nanostructures for controlled therapeutic drug delivery. Current Opinion in Colloid & Interface Science 2021;52:101411. [DOI: 10.1016/j.cocis.2020.101411] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
12 Nicolson F, Ali A, Kircher MF, Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. Adv Sci (Weinh) 2020;7:2001669. [PMID: 33304747 DOI: 10.1002/advs.202001669] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
13 Torres Vidal A, Medintz IL, Bui H. DNA Microsystems for Biodiagnosis. Micromachines (Basel) 2020;11:E445. [PMID: 32340280 DOI: 10.3390/mi11040445] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021;121:13797-868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
15 Jalal AR, Dixon JE. Efficient Delivery of Transducing Polymer Nanoparticles for Gene-Mediated Induction of Osteogenesis for Bone Regeneration. Front Bioeng Biotechnol 2020;8:849. [PMID: 32850720 DOI: 10.3389/fbioe.2020.00849] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Bush J, Singh S, Vargas M, Oktay E, Hu CH, Veneziano R. Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies. Molecules 2020;25:E3386. [PMID: 32722650 DOI: 10.3390/molecules25153386] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
17 Jiang T, Xu G, Chen G, Zheng Y, He B, Gu Z. Progress in transdermal drug delivery systems for cancer therapy. Nano Res 2020;13:1810-24. [DOI: 10.1007/s12274-020-2664-5] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 6.5] [Reference Citation Analysis]
18 Green CM, Hastman DA, Mathur D, Susumu K, Oh E, Medintz IL, Díaz SA. Direct and Efficient Conjugation of Quantum Dots to DNA Nanostructures with Peptide-PNA. ACS Nano 2021;15:9101-10. [PMID: 33955735 DOI: 10.1021/acsnano.1c02296] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
19 Sathya N, Karki B, Rane KP, Jha A, Pal A. Tuning and Sensitivity Improvement of Bi-Metallic Structure-Based Surface Plasmon Resonance Biosensor with 2-D $$\upvarepsilon$$-Tin Selenide Nanosheets. Plasmonics. [DOI: 10.1007/s11468-021-01565-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
20 Kim KR, Kim J, Mao C, Ahn DR. Kissing loop-mediated fabrication of RNA nanoparticles and their potential as cellular and in vivo siRNA delivery platforms. Biomater Sci 2021. [PMID: 34755728 DOI: 10.1039/d1bm01440d] [Reference Citation Analysis]
21 Ahn SY, Liu J, Vellampatti S, Wu Y, Um SH. DNA Transformations for Diagnosis and Therapy. Adv Funct Mater 2021;31:2008279. [PMID: 33613148 DOI: 10.1002/adfm.202008279] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
22 Keller A, Linko V. Herausforderungen und Perspektiven von DNA‐Nanostrukturen in der Biomedizin. Angew Chem 2020;132:15950-66. [DOI: 10.1002/ange.201916390] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Klein WP, Rolczynski BS, Oliver SM, Zadegan R, Buckhout-white S, Ancona MG, Cunningham PD, Melinger JS, Vora PM, Kuang W, Medintz IL, Díaz SA. DNA Origami Chromophore Scaffold Exploiting HomoFRET Energy Transport to Create Molecular Photonic Wires. ACS Appl Nano Mater 2020;3:3323-36. [DOI: 10.1021/acsanm.0c00038] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
24 Li X, Yang F, Li S, Yuan R, Xiang Y. Size-Discriminative DNA Nanocage Framework Enables Sensitive and High-Fidelity Imaging of Mature MicroRNA in Living Cells. Anal Chem 2022. [PMID: 35749565 DOI: 10.1021/acs.analchem.2c02026] [Reference Citation Analysis]
25 Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Complex DNA Architectonics─Self-Assembly of Amphiphilic Oligonucleotides into Ribbons, Vesicles, and Asterosomes. Bioconjug Chem 2022. [PMID: 35357155 DOI: 10.1021/acs.bioconjchem.2c00077] [Reference Citation Analysis]
26 Yuan P, Mao X, Liew SS, Wu S, Huang Y, Li L, Yao SQ. Versatile Multiplex Endogenous RNA Detection with Simultaneous Signal Normalization Using Mesoporous Silica Nanoquenchers. ACS Appl Mater Interfaces 2020;12:57695-709. [DOI: 10.1021/acsami.0c16491] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
27 Chandrasekaran AR. Nuclease resistance of DNA nanostructures. Nat Rev Chem 2021;:1-15. [PMID: 33585701 DOI: 10.1038/s41570-021-00251-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
28 Green CM, Hughes WL, Graugnard E, Kuang W. Correlative Super-Resolution and Atomic Force Microscopy of DNA Nanostructures and Characterization of Addressable Site Defects. ACS Nano 2021. [PMID: 34137595 DOI: 10.1021/acsnano.1c01976] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
29 Chakraborty B, Das S, Gupta A, Xiong Y, T-V V, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022;8:667-92. [PMID: 35220716 DOI: 10.1021/acsinfecdis.1c00546] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Obuobi S, Škalko-Basnet N. Nucleic Acid Hybrids as Advanced Antibacterial Nanocarriers. Pharmaceutics 2020;12:E643. [PMID: 32650506 DOI: 10.3390/pharmaceutics12070643] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Henry SJW, Stephanopoulos N. Functionalizing DNA nanostructures for therapeutic applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1729. [PMID: 34008347 DOI: 10.1002/wnan.1729] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Mathur D, Rogers KE, Díaz SA, Muroski ME, Klein WP, Nag OK, Lee K, Field LD, Delehanty JB, Medintz IL. Determining the Cytosolic Stability of Small DNA Nanostructures In Cellula. Nano Lett 2022. [PMID: 35580267 DOI: 10.1021/acs.nanolett.2c00917] [Reference Citation Analysis]
33 Bui H, Díaz SA, Fontana J, Chiriboga M, Veneziano R, Medintz IL. Utilizing the Organizational Power of DNA Scaffolds for New Nanophotonic Applications. Adv Optical Mater 2019;7:1900562. [DOI: 10.1002/adom.201900562] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
34 Sun X, Liu H. Nucleic Acid Nanostructure Assisted Immune Modulation. ACS Appl Bio Mater 2020;3:2765-78. [DOI: 10.1021/acsabm.9b01195] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Chi Q, Yang Z, Xu K, Wang C, Liang H. DNA Nanostructure as an Efficient Drug Delivery Platform for Immunotherapy. Front Pharmacol 2019;10:1585. [PMID: 32063844 DOI: 10.3389/fphar.2019.01585] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 9.0] [Reference Citation Analysis]
36 Chandrasekaran AR, Halvorsen K. Nuclease Degradation Analysis of DNA Nanostructures Using Gel Electrophoresis. Curr Protoc Nucleic Acid Chem 2020;82:e115. [PMID: 32931657 DOI: 10.1002/cpnc.115] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
37 Xu W, Liu T, Wang Y, Zhang W, Yao X, Hou B, Xie Y, Chu Z, Jin W. Au/In 2 O 3 Nanocubes Based Label‐free Aptasensor for Ultrasensitive and Rapid Recognition of Cardiac Troponin I. Electroanalysis 2021;33:1810-8. [DOI: 10.1002/elan.202100117] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]