BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou L, Qiu T, Lv F, Liu L, Ying J, Wang S. Self-Assembled Nanomedicines for Anticancer and Antibacterial Applications. Adv Healthc Mater 2018;7:e1800670. [PMID: 30080319 DOI: 10.1002/adhm.201800670] [Cited by in Crossref: 46] [Cited by in F6Publishing: 41] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022;13:979469. [DOI: 10.3389/fimmu.2022.979469] [Reference Citation Analysis]
2 Trivedi R, Upadhyay TK, Kausar MA, Saeed A, Sharangi AB, Almatroudi A, Alabdallah NM, Saeed M, Aqil F. Nanotechnological interventions of the microbiome as a next-generation antimicrobial therapy. Sci Total Environ 2022;833:155085. [PMID: 35398124 DOI: 10.1016/j.scitotenv.2022.155085] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
3 Ke L, Wei F, Xie L, Karges J, Chen Y, Ji L, Chao H. A Biodegradable Iridium(III) Coordination Polymer for Enhanced Two‐Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie. [DOI: 10.1002/ange.202205429] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Xie F, Liu Z, Wang P, Cai M, Li Y, Yan J, Lin Q, Luo F. Self-Delivering Nanodrugs Developed via Small-Molecule-Directed Assembly and Macrophage Cloaking for Sonodynamic-Augmented Immunotherapy. Adv Healthc Mater 2022;:e2102770. [PMID: 35575205 DOI: 10.1002/adhm.202102770] [Reference Citation Analysis]
5 Huang Y, Zou L, Wang J, Jin Q, Ji J. Stimuli-responsive nanoplatforms for antibacterial applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2022;14:e1775. [PMID: 35142071 DOI: 10.1002/wnan.1775] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Mathew AA, Antony M, Thomas R, Sarojini S, Balachandran M. Fluorescent PVDF dots: from synthesis to biocidal activity. Polym Bull . [DOI: 10.1007/s00289-022-04096-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Tu L, Liao Z, Luo Z, Wu Y, Herrmann A, Huo S. Ultrasound‐controlled drug release and drug activation for cancer therapy. Exploration 2021;1:20210023. [DOI: 10.1002/exp.20210023] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
8 Qin J, Yang X, Lv C, Li Y, Liu K, Zang J, Yang X, Dong L, Shan C. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Materials & Design 2021;210:110091. [DOI: 10.1016/j.matdes.2021.110091] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
9 Zhou Y, Chen Y, Huang X, Tan Y, Hu R, Li C, Niu MM. A Supramolecular Nanomedicine Based on Bendamustine and MDM2-Targeted D-peptide Inhibitor for Breast Cancer Therapy. Adv Healthc Mater 2021;10:e2100980. [PMID: 34558228 DOI: 10.1002/adhm.202100980] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Liu N, Zhu L, Li Z, Liu W, Sun M, Zhou Z. In situ self-assembled peptide nanofibers for cancer theranostics. Biomater Sci 2021;9:5427-36. [PMID: 34319316 DOI: 10.1039/d1bm00782c] [Reference Citation Analysis]
11 Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. Soft Matter 2020;16:10065-95. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
12 Du C, Gao D, Gao M, Yuan H, Liu X, Wang B, Xing C. Property Regulation of Conjugated Oligoelectrolytes with Polyisocyanide to Achieve Efficient Photodynamic Antibacterial Biomimetic Hydrogels. ACS Appl Mater Interfaces 2021;13:27955-62. [PMID: 34124876 DOI: 10.1021/acsami.1c06659] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Grosso R, de-Paz MV. Thiolated-Polymer-Based Nanoparticles as an Avant-Garde Approach for Anticancer Therapies-Reviewing Thiomers from Chitosan and Hyaluronic Acid. Pharmaceutics 2021;13:854. [PMID: 34201403 DOI: 10.3390/pharmaceutics13060854] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
14 Han QJ, Lan XT, Wen Y, Zhang CZ, Cleary M, Sayyed Y, Huang G, Tuo X, Yi L, Xi Z, Li LY, Zhang QZ. Matrix Metalloproteinase-9-Responsive Surface Charge-Reversible Nanocarrier to Enhance Endocytosis as Efficient Targeted Delivery System for Cancer Diagnosis and Therapy. Adv Healthc Mater 2021;10:e2002143. [PMID: 33694329 DOI: 10.1002/adhm.202002143] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Keum C, Hong J, Kim D, Lee SY, Kim H. Lysosome-Instructed Self-Assembly of Amino-Acid-Functionalized Perylene Diimide for Multidrug-Resistant Cancer Cells. ACS Appl Mater Interfaces 2021;13:14866-74. [PMID: 33759486 DOI: 10.1021/acsami.0c20050] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
16 Chen J, Zhao Y, Yao Q, Gao Y. Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines. Biomed Mater 2021;16:022011. [PMID: 33630754 DOI: 10.1088/1748-605X/abc2e9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Yang J, Zhang L, Zhou Q, Chen F, Stenzel M, Gao F, Liu C, Yuan H, Li H, Jiang Y. Self-assembled anionic and cationic Au nanoparticles with Au nanoclusters for the exploration of different biological responsiveness in cancer therapy. Nanoscale Adv 2021;3:2812-21. [DOI: 10.1039/d0na01066a] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Li Z, Bai H, Jia S, Yuan H, Gao L, Liang H. Design of functional polymer nanomaterials for antimicrobial therapy and combatting resistance. Mater Chem Front 2021;5:1236-52. [DOI: 10.1039/d0qm00837k] [Cited by in Crossref: 8] [Article Influence: 8.0] [Reference Citation Analysis]
19 Khot VM, Salunkhe AB, Pricl S, Bauer J, Thorat ND, Townley H. Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov Today 2021;26:724-39. [PMID: 33359624 DOI: 10.1016/j.drudis.2020.12.016] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
20 Li D, Zhang R, Liu G, Kang Y, Wu J. Redox-Responsive Self-Assembled Nanoparticles for Cancer Therapy. Adv Healthc Mater 2020;9:e2000605. [PMID: 32893506 DOI: 10.1002/adhm.202000605] [Cited by in Crossref: 16] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
21 Wu Q, Gao H, Vriesekoop F, Liu Z, He J, Liang H. Calcium phosphate coated core-shell protein nanocarriers: Robust stability, controlled release and enhanced anticancer activity for curcumin delivery. Materials Science and Engineering: C 2020;115:111094. [DOI: 10.1016/j.msec.2020.111094] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Li J, Ding Z, Li Y, Miao J, Wang W, Nundlall K, Chen S. Reactive oxygen species-sensitive thioketal-linked mesoporous silica nanoparticles as drug carrier for effective antibacterial activity. Materials & Design 2020;195:109021. [DOI: 10.1016/j.matdes.2020.109021] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
23 Pan J, Cui Z. Self-Assembled Nanoparticles: Exciting Platforms for Vaccination. Biotechnol J 2020;15:e2000087. [PMID: 33411412 DOI: 10.1002/biot.202000087] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
24 Yang J, An H, Wang H. Self-Assembled Peptide Drug Delivery Systems. ACS Appl Bio Mater 2021;4:24-46. [DOI: 10.1021/acsabm.0c00707] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
25 Yue L, Jin W, Chi S, Yang T, Lei Z, Zhu H, Zhao Y. pH‐responsive chitosan/sulfobutyl ether‐β‐cyclodextrin supramolecular nanoparticles for controlled release of sodium ferulate. Polym Eng Sci 2020;60:2403-13. [DOI: 10.1002/pen.25479] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
26 Özkan M, Hadi SE, Tunç İ, Midilli Y, Ortaç B, Tuncel D. Cucurbit[7]uril-Capped Hybrid Conjugated Oligomer-Gold Nanoparticles for Combined Photodynamic-Photothermal Therapy and Cellular Imaging. ACS Appl Polym Mater 2020;2:3840-9. [DOI: 10.1021/acsapm.0c00540] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
27 Dib N, Falcone RD, Acuña A, García-río L. The ionic liquid-surfactant bmim-AOT and nontoxic lipophilic solvents as components of reverse micelles alternative to the traditional systems. A study by 1H NMR spectroscopy. Journal of Molecular Liquids 2020;304:112762. [DOI: 10.1016/j.molliq.2020.112762] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
28 Wu S, Li Y, Ding W, Xu L, Ma Y, Zhang L. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications. Nanomicro Lett 2020;12:70. [PMID: 34138268 DOI: 10.1007/s40820-020-0404-8] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 10.5] [Reference Citation Analysis]
29 Tang J, Zheng F, Zhao J, Zhao J. Self-assembled multifunctional nanotheranostics loading GEM for targeted lung cancer therapy. Mater Sci Eng C Mater Biol Appl 2020;112:110786. [PMID: 32409023 DOI: 10.1016/j.msec.2020.110786] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
30 Zhou C, Wang Y. Structure–activity relationship of cationic surfactants as antimicrobial agents. Current Opinion in Colloid & Interface Science 2020;45:28-43. [DOI: 10.1016/j.cocis.2019.11.009] [Cited by in Crossref: 30] [Cited by in F6Publishing: 12] [Article Influence: 15.0] [Reference Citation Analysis]
31 Zou P, Chen W, Sun T, Gao Y, Li L, Wang H. Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. Biomater Sci 2020;8:4975-96. [DOI: 10.1039/d0bm00789g] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
32 Taylor PA, Huang H, Kiick KL, Jayaraman A. Placement of tyrosine residues as a design element for tuning the phase transition of elastin-peptide-containing conjugates: experiments and simulations. Mol Syst Des Eng 2020;5:1239-54. [DOI: 10.1039/d0me00051e] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
33 Guo D, Yang H, Zhang Y, Chen L. Constructing mesoporous silica-grown reduced graphene oxide nanoparticles for photothermal-chemotherapy. Microporous and Mesoporous Materials 2019;288:109608. [DOI: 10.1016/j.micromeso.2019.109608] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 2.7] [Reference Citation Analysis]
34 Yang D, Yang Y, Zhou Y, Yu L, Wang R, Di B, Niu M. A Redox‐Triggered Bispecific Supramolecular Nanomedicine Based on Peptide Self‐Assembly for High‐Efficacy and Low‐Toxic Cancer Therapy. Adv Funct Mater 2019;30:1904969. [DOI: 10.1002/adfm.201904969] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 6.0] [Reference Citation Analysis]
35 Chen X, Zhang X, Li C, Sayed SM, Sun W, Lin F, Wu F. Superbright organosilica nanodots as a universal sensor for fast discrimination and accurate quantification of live/dead cells. Sensors and Actuators B: Chemical 2019;295:49-55. [DOI: 10.1016/j.snb.2019.05.031] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
36 Lu Z, Zhang Z, Tang Y. Conjugated Polymers-Based Thermal-Responsive Nanoparticles for Controlled Drug Delivery, Tracking, and Synergistic Photodynamic Therapy/Chemotherapy. ACS Appl Bio Mater 2019;2:4485-92. [DOI: 10.1021/acsabm.9b00640] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
37 Zhao H, Hussain S, Liu X, Li S, Lv F, Liu L, Wang S. Design of an Amphiphilic Perylene Diimide for Optical Recognition of Anticancer Drug through a Chirality-Induced Helical Structure. Chemistry 2019;25:9834-9. [PMID: 31173417 DOI: 10.1002/chem.201901948] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
38 Yang G, Chen S, Zhang J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front Pharmacol 2019;10:751. [PMID: 31333467 DOI: 10.3389/fphar.2019.00751] [Cited by in Crossref: 26] [Cited by in F6Publishing: 41] [Article Influence: 8.7] [Reference Citation Analysis]
39 Koch F, Ekat K, Kilian D, Hettich T, Germershaus O, Lang H, Peters K, Kreikemeyer B. A Versatile Biocompatible Antibiotic Delivery System Based on Self-Assembling Peptides with Antimicrobial and Regenerative Potential. Adv Healthc Mater 2019;8:e1900167. [PMID: 30985084 DOI: 10.1002/adhm.201900167] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
40 Guo J, Xing C, Yuan H, Chai R, Zhan Y. Oligo ( p -Phenylene Vinylene)/Polyisocyanopeptide Biomimetic Composite Hydrogel-Based Three-Dimensional Cell Culture System for Anticancer and Antibacterial Therapeutics. ACS Appl Bio Mater 2019;2:2520-7. [DOI: 10.1021/acsabm.9b00217] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
41 Pan Q, Zhang S, Li R, He Y, Wang Y. A low-cost and reusable photothermal membrane for solar-light induced anti-bacterial regulation. J Mater Chem B 2019;7:2948-53. [DOI: 10.1039/c9tb00260j] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]