BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin LC, Chattopadhyay S, Lin J, Hu CJ. Advances and Opportunities in Nanoparticle- and Nanomaterial-Based Vaccines against Bacterial Infections. Adv Healthcare Mater 2018;7:1701395. [DOI: 10.1002/adhm.201701395] [Cited by in Crossref: 37] [Cited by in F6Publishing: 36] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Y, Shen T, Zhou S, Wang W, Lin S, Zhu G. pH-Responsive STING-Activating DNA Nanovaccines for Cancer Immunotherapy. Adv Ther (Weinh) 2020;3:2000083. [PMID: 34337143 DOI: 10.1002/adtp.202000083] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
2 Yang G, Chen S, Zhang J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front Pharmacol 2019;10:751. [PMID: 31333467 DOI: 10.3389/fphar.2019.00751] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 8.7] [Reference Citation Analysis]
3 Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8+ T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021;:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Reference Citation Analysis]
4 Attia MA, Essa EA, Elebyary TT, Faheem AM, Elkordy AA. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals (Basel) 2021;14:1173. [PMID: 34832955 DOI: 10.3390/ph14111173] [Reference Citation Analysis]
5 Dykman LA, Staroverov SA, Fomin AS. Effect of M2e peptide–gold nanoparticle conjugates on development of anti-influenza antibodies. Gold Bull 2018;51:197-203. [DOI: 10.1007/s13404-018-0239-y] [Reference Citation Analysis]
6 Qin Y, Lao YH, Wang H, Zhang J, Yi K, Chen Z, Han J, Song W, Tao Y, Li M. Combatting Helicobacter pylori with oral nanomedicines. J Mater Chem B 2021;9:9826-38. [PMID: 34854456 DOI: 10.1039/d1tb02038b] [Reference Citation Analysis]
7 Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021;270:120709. [PMID: 33581608 DOI: 10.1016/j.biomaterials.2021.120709] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
8 Xie X, Song T, Feng Y, Zhang H, Yang G, Wu C, You F, Liu Y, Yang H. Nanotechnology-based multifunctional vaccines for cancer immunotherapy. Chemical Engineering Journal 2022;437:135505. [DOI: 10.1016/j.cej.2022.135505] [Reference Citation Analysis]
9 Tapia D, Sanchez-Villamil JI, Torres AG. Multicomponent gold nano-glycoconjugate as a highly immunogenic and protective platform against Burkholderia mallei. NPJ Vaccines 2020;5:82. [PMID: 32963813 DOI: 10.1038/s41541-020-00229-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Chen S, Sandford S, Kirman J, Rehm BHA. Design of Bacterial Inclusion Bodies as Antigen Carrier Systems. Adv Biosys 2018;2:1800118. [DOI: 10.1002/adbi.201800118] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
11 Lin LC, Huang CY, Yao BY, Lin JC, Agrawal A, Algaissi A, Peng BH, Liu YH, Huang PH, Juang RH, Chang YC, Tseng CT, Chen HW, Hu CJ. Viromimetic STING Agonist-Loaded Hollow Polymeric Nanoparticles for Safe and Effective Vaccination against Middle East Respiratory Syndrome Coronavirus. Adv Funct Mater 2019;29:1807616. [PMID: 32313544 DOI: 10.1002/adfm.201807616] [Cited by in Crossref: 63] [Cited by in F6Publishing: 53] [Article Influence: 21.0] [Reference Citation Analysis]
12 Dong Z, Liu W, Liu K, Lu Y, Wu W, Qi J, Chen Z. Effects on immunization of the physicochemical parameters of particles as vaccine carriers. Drug Discov Today 2021;26:1712-20. [PMID: 33737073 DOI: 10.1016/j.drudis.2021.03.007] [Reference Citation Analysis]
13 Lung P, Yang J, Li Q. Nanoparticle formulated vaccines: opportunities and challenges. Nanoscale 2020;12:5746-63. [PMID: 32124894 DOI: 10.1039/c9nr08958f] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 12.0] [Reference Citation Analysis]
14 Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano 2020;14:7760-82. [PMID: 32571007 DOI: 10.1021/acsnano.0c04006] [Cited by in Crossref: 96] [Cited by in F6Publishing: 79] [Article Influence: 48.0] [Reference Citation Analysis]
15 Hashemzadeh A, Avan A, Ferns GA, Khazaei M. Vaccines based on virus-like nano-particles for use against Middle East Respiratory Syndrome (MERS) coronavirus. Vaccine 2020;38:5742-6. [PMID: 32684497 DOI: 10.1016/j.vaccine.2020.07.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
16 Liu H, Zhong W, Zhang X, Lin D, Wu J. Nanomedicine as a promising strategy for the theranostics of infectious diseases. J Mater Chem B 2021;9:7878-908. [PMID: 34611689 DOI: 10.1039/d1tb01316e] [Reference Citation Analysis]
17 Ma C, Wu M, Ye W, Huang Z, Ma X, Wang W, Wang W, Huang Y, Pan X, Wu C. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res 2021;11:1218-35. [PMID: 32946043 DOI: 10.1007/s13346-020-00849-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater 2020;108:1-21. [PMID: 32268235 DOI: 10.1016/j.actbio.2020.03.020] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 10.0] [Reference Citation Analysis]
19 Wang S, Gao J, Li M, Wang L, Wang Z. A facile approach for development of a vaccine made of bacterial double-layered membrane vesicles (DMVs). Biomaterials 2018;187:28-38. [PMID: 30292939 DOI: 10.1016/j.biomaterials.2018.09.042] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
20 Hu CJ, Chen YT, Fang ZS, Chang WS, Chen HW. Antiviral efficacy of nanoparticulate vacuolar ATPase inhibitors against influenza virus infection. Int J Nanomedicine 2018;13:8579-93. [PMID: 30587980 DOI: 10.2147/IJN.S185806] [Cited by in Crossref: 23] [Cited by in F6Publishing: 16] [Article Influence: 5.8] [Reference Citation Analysis]
21 Zhang C, Zhao W, Bian C, Hou X, Deng B, McComb DW, Chen X, Dong Y. Antibiotic-Derived Lipid Nanoparticles to Treat Intracellular Staphylococcus aureus. ACS Appl Bio Mater 2019;2:1270-7. [PMID: 31750420 DOI: 10.1021/acsabm.8b00821] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
22 Qiao L, Rao Y, Zhu K, Rao X, Zhou R. Engineered Remolding and Application of Bacterial Membrane Vesicles. Front Microbiol 2021;12:729369. [PMID: 34690971 DOI: 10.3389/fmicb.2021.729369] [Reference Citation Analysis]
23 Bidram E, Esmaeili Y, Amini A, Sartorius R, Tay FR, Shariati L, Makvandi P. Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomater Sci Eng 2021;7:2150-76. [PMID: 33979143 DOI: 10.1021/acsbiomaterials.1c00318] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Dua K, Rapalli VK, Shukla SD, Singhvi G, Shastri MD, Chellappan DK, Satija S, Mehta M, Gulati M, Pinto TDJA, Gupta G, Hansbro PM. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomedicine & Pharmacotherapy 2018;107:1218-29. [DOI: 10.1016/j.biopha.2018.08.101] [Cited by in Crossref: 42] [Cited by in F6Publishing: 31] [Article Influence: 10.5] [Reference Citation Analysis]
25 Li W, Hu Y, Zhang Q, Hua L, Yang Z, Ren Z, Zheng X, Huang W, Ma Y. Development of Drug-Resistant Klebsiella pneumoniae Vaccine via Novel Vesicle Production Technology. ACS Appl Mater Interfaces 2021;13:32703-15. [PMID: 34251169 DOI: 10.1021/acsami.1c06701] [Reference Citation Analysis]
26 Oakes RS, Froimchuk E, Jewell CM. Engineering Biomaterials to Direct Innate Immunity. Adv Ther (Weinh) 2019;2:1800157. [PMID: 31236439 DOI: 10.1002/adtp.201800157] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
27 Okkeh M, Bloise N, Restivo E, De Vita L, Pallavicini P, Visai L. Gold Nanoparticles: Can They Be the Next Magic Bullet for Multidrug-Resistant Bacteria? Nanomaterials (Basel) 2021;11:312. [PMID: 33530434 DOI: 10.3390/nano11020312] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
28 Wibowo D, Jorritsma SHT, Gonzaga ZJ, Evert B, Chen S, Rehm BHA. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 2021;268:120597. [PMID: 33360074 DOI: 10.1016/j.biomaterials.2020.120597] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
29 Feng X, Xu W, Li Z, Song W, Ding J, Chen X. Immunomodulatory Nanosystems. Adv Sci (Weinh) 2019;6:1900101. [PMID: 31508270 DOI: 10.1002/advs.201900101] [Cited by in Crossref: 104] [Cited by in F6Publishing: 84] [Article Influence: 34.7] [Reference Citation Analysis]
30 Khoshgozaran Roudbaneh SZ, Kahbasi S, Sohrabi MJ, Hasan A, Salihi A, Mirzaie A, Niyazmand A, Qadir Nanakali NM, Shekha MS, Aziz FM, Vaghar-lahijani G, Keshtali AB, Ehsani E, Rasti B, Falahati M. Albumin binding, antioxidant and antibacterial effects of cerium oxide nanoparticles. Journal of Molecular Liquids 2019;296:111839. [DOI: 10.1016/j.molliq.2019.111839] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
31 Pandey RP, Mukherjee R, Priyadarshini A, Gupta A, Vibhuti A, Leal E, Sengupta U, Katoch VM, Sharma P, Moore CE, Raj VS, Lyu X. Potential of nanoparticles encapsulated drugs for possible inhibition of the antimicrobial resistance development. Biomed Pharmacother 2021;141:111943. [PMID: 34328105 DOI: 10.1016/j.biopha.2021.111943] [Reference Citation Analysis]
32 Liu YH, Kuo SC, Yao BY, Fang ZS, Lee YT, Chang YC, Chen TL, Hu CJ. Colistin nanoparticle assembly by coacervate complexation with polyanionic peptides for treating drug-resistant gram-negative bacteria. Acta Biomater 2018;82:133-42. [PMID: 30316023 DOI: 10.1016/j.actbio.2018.10.013] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
33 Li J, Yang S, Zuo C, Dai L, Guo Y, Xie G. Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations. ACS Sens 2020;5:970-7. [PMID: 32157873 DOI: 10.1021/acssensors.9b02305] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 11.0] [Reference Citation Analysis]
34 Niculescu AG, Grumezescu AM. Polymer-Based Nanosystems-A Versatile Delivery Approach. Materials (Basel) 2021;14:6812. [PMID: 34832213 DOI: 10.3390/ma14226812] [Reference Citation Analysis]
35 Zhang Y, Lin S, Wang XY, Zhu G. Nanovaccines for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2019;11:e1559. [PMID: 31172659 DOI: 10.1002/wnan.1559] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
36 Chattopadhyay S, Hu CJ. Nanomedicinal delivery of stimulator of interferon genes agonists: recent advances in virus vaccination. Nanomedicine (Lond) 2020;15:2883-94. [PMID: 33252301 DOI: 10.2217/nnm-2020-0269] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
37 Naikoo GA, Mustaqeem M, Hassan IU, Awan T, Arshad F, Salim H, Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. Journal of Saudi Chemical Society 2021;25:101304. [DOI: 10.1016/j.jscs.2021.101304] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 14.0] [Reference Citation Analysis]
38 Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev Vaccines 2020;19:465-77. [PMID: 32306785 DOI: 10.1080/14760584.2020.1758070] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
39 Jin Z, Gao S, Cui X, Sun D, Zhao K. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines. Int J Pharm 2019;572:118731. [PMID: 31669213 DOI: 10.1016/j.ijpharm.2019.118731] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 10.0] [Reference Citation Analysis]
40 Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic Nanotechnology toward Personalized Vaccines. Adv Mater 2020;32:e1901255. [PMID: 31206841 DOI: 10.1002/adma.201901255] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 20.7] [Reference Citation Analysis]
41 Yenkoidiok-Douti L, Jewell CM. Integrating Biomaterials and Immunology to Improve Vaccines Against Infectious Diseases. ACS Biomater Sci Eng 2020;6:759-78. [PMID: 33313391 DOI: 10.1021/acsbiomaterials.9b01255] [Cited by in Crossref: 17] [Cited by in F6Publishing: 11] [Article Influence: 8.5] [Reference Citation Analysis]
42 Dykman LA, Volokh OA, Gromova OV, Durakova OS, Vorobeva SA, Kireev MN, Livanova LF, Nikiforov AK, Shchyogolev SY, Kutyrev VV. Obtaining and Characteristic of Antibodies to Vibrio cholerae Protective Antigens Conjugated with Gold Nanoparticles. Dokl Biochem Biophys 2020;490:19-21. [PMID: 32342306 DOI: 10.1134/S1607672920010068] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]