BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Santos D, Wieringa P, Moroni L, Navarro X, Valle JD. PEOT/PBT Guides Enhance Nerve Regeneration in Long Gap Defects. Adv Healthc Mater 2017;6. [PMID: 27973708 DOI: 10.1002/adhm.201600298] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 6.2] [Reference Citation Analysis]
Number Citing Articles
1 Grande S, Cools P, Asadian M, Van Guyse J, Onyshchenko I, Declercq H, Morent R, Hoogenboom R, De Geyter N. Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering. Macromol Biosci 2018;18:e1800309. [PMID: 30353664 DOI: 10.1002/mabi.201800309] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
2 Amani H, Kazerooni H, Hassanpoor H, Akbarzadeh A, Pazoki-Toroudi H. Tailoring synthetic polymeric biomaterials towards nerve tissue engineering: a review. Artif Cells Nanomed Biotechnol 2019;47:3524-39. [PMID: 31437011 DOI: 10.1080/21691401.2019.1639723] [Cited by in Crossref: 31] [Cited by in F6Publishing: 32] [Article Influence: 15.5] [Reference Citation Analysis]
3 de la Oliva N, Mueller M, Stieglitz T, Navarro X, Del Valle J. On the use of Parylene C polymer as substrate for peripheral nerve electrodes. Sci Rep 2018;8:5965. [PMID: 29654317 DOI: 10.1038/s41598-018-24502-z] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 7.8] [Reference Citation Analysis]
4 Del Valle J, Santos D, Delgado-Martínez I, de la Oliva N, Giudetti G, Micera S, Navarro X. Segregation of motor and sensory axons regenerating through bicompartmental tubes by combining extracellular matrix components with neurotrophic factors. J Tissue Eng Regen Med 2018;12:e1991-2000. [PMID: 29266822 DOI: 10.1002/term.2629] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Chen S, Zou R, Li L, Shang J, Lin S, Lan J. Preparation of biobased poly(propylene 2,5‐furandicarboxylate) fibers: Mechanical, thermal and hydrolytic degradation properties. J Appl Polym Sci 2021;138. [DOI: 10.1002/app.50345] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Malheiro A, Seijas-Gamardo A, Harichandan A, Mota C, Wieringa P, Moroni L. Development of an In Vitro Biomimetic Peripheral Neurovascular Platform. ACS Appl Mater Interfaces 2022;14:31567-85. [PMID: 35815638 DOI: 10.1021/acsami.2c03861] [Reference Citation Analysis]
7 Zarrintaj P, Zangene E, Manouchehri S, Amirabad LM, Baheiraei N, Hadjighasem MR, Farokhi M, Ganjali MR, Walker BW, Saeb MR, Mozafari M, Thomas S, Annabi N. Conductive biomaterials as nerve conduits: Recent advances and future challenges. Applied Materials Today 2020;20:100784. [DOI: 10.1016/j.apmt.2020.100784] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Qian Y, Song J, Zhao X, Chen W, Ouyang Y, Yuan W, Fan C. 3D Fabrication with Integration Molding of a Graphene Oxide/Polycaprolactone Nanoscaffold for Neurite Regeneration and Angiogenesis. Adv Sci (Weinh) 2018;5:1700499. [PMID: 29721407 DOI: 10.1002/advs.201700499] [Cited by in Crossref: 80] [Cited by in F6Publishing: 77] [Article Influence: 20.0] [Reference Citation Analysis]
9 Sinha R, Sanchez A, Camara-Torres M, Uriszar-Aldaca IC, Calore AR, Harings J, Gambardella A, Ciccarelli L, Vanzanella V, Sisani M, Scatto M, Wendelbo R, Perez S, Villanueva S, Matanza A, Patelli A, Grizzuti N, Mota C, Moroni L. Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillers. ACS Appl Polym Mater 2021;3:3788-99. [PMID: 34476399 DOI: 10.1021/acsapm.1c00363] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
10 Hadavi E, de Vries RHW, Smink AM, de Haan B, Leijten J, Schwab LW, Karperien MHBJ, de Vos P, Dijkstra PJ, van Apeldoorn AA. In vitro degradation profiles and in vivo biomaterial-tissue interactions of microwell array delivery devices. J Biomed Mater Res B Appl Biomater 2021;109:117-27. [PMID: 32672384 DOI: 10.1002/jbm.b.34686] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Aleemardani M, Zare P, Seifalian A, Bagher Z, Seifalian AM. Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury. Biomedicines 2022;10:73. [DOI: 10.3390/biomedicines10010073] [Reference Citation Analysis]
12 Wu S, Kuss M, Qi D, Hong J, Wang H, Zhang W, Chen S, Ni S, Duan B. Development of Cryogel-Based Guidance Conduit for Peripheral Nerve Regeneration. ACS Appl Bio Mater 2019;2:4864-71. [DOI: 10.1021/acsabm.9b00626] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
13 Anand S, Danti S, Moroni L, Mota C. Regenerative therapies for tympanic membrane. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.100942] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 de la Oliva N, Navarro X, Del Valle J. Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants. J Biomed Mater Res A 2018;106:746-57. [PMID: 29052368 DOI: 10.1002/jbm.a.36274] [Cited by in Crossref: 23] [Cited by in F6Publishing: 17] [Article Influence: 4.6] [Reference Citation Analysis]
15 Malheiro A, Morgan F, Baker M, Moroni L, Wieringa P. A three-dimensional biomimetic peripheral nerve model for drug testing and disease modelling. Biomaterials 2020;257:120230. [PMID: 32736264 DOI: 10.1016/j.biomaterials.2020.120230] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
16 Vanzanella V, Scatto M, Zant E, Sisani M, Bastianini M, Grizzuti N. The Rheology of PEOT/PBT Block Copolymers in the Melt State and in the Thermally-Induced Sol/Gel Transition. Implications on the 3D-Printing Bio-Scaffold Process. Materials (Basel) 2019;12:E226. [PMID: 30634705 DOI: 10.3390/ma12020226] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
17 de Vries R, Stell A, Mohammed S, Hermanns C, Martinez AH, Jetten M, van Apeldoorn A. Bioengineering, biomaterials, and β-cell replacement therapy. Transplantation, Bioengineering, and Regeneration of the Endocrine Pancreas. Elsevier; 2020. pp. 461-86. [DOI: 10.1016/b978-0-12-814831-0.00033-6] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Zhang D, Li Z, Shi H, Yao Y, Du W, Lu P, Liang K, Hong L, Gao C. Micropatterns and peptide gradient on the inner surface of a guidance conduit synergistically promotes nerve regeneration in vivo. Bioact Mater 2022;9:134-46. [PMID: 34820561 DOI: 10.1016/j.bioactmat.2021.07.010] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
19 Girão AF, Wieringa P, Pinto SC, Marques PAAP, Micera S, van Wezel R, Ahmed M, Truckenmueller R, Moroni L. Ultraviolet Functionalization of Electrospun Scaffolds to Activate Fibrous Runways for Targeting Cell Adhesion. Front Bioeng Biotechnol 2019;7:159. [PMID: 31297371 DOI: 10.3389/fbioe.2019.00159] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Wieringa PA, Gonçalves de Pinho AR, Micera S, van Wezel RJA, Moroni L. Biomimetic Architectures for Peripheral Nerve Repair: A Review of Biofabrication Strategies. Adv Healthc Mater 2018;7:e1701164. [PMID: 29349931 DOI: 10.1002/adhm.201701164] [Cited by in Crossref: 56] [Cited by in F6Publishing: 55] [Article Influence: 14.0] [Reference Citation Analysis]
21 Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu WF, Fuh JYH. Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Polymers (Basel) 2018;10:E753. [PMID: 30960678 DOI: 10.3390/polym10070753] [Cited by in Crossref: 31] [Cited by in F6Publishing: 24] [Article Influence: 7.8] [Reference Citation Analysis]
22 Sthijns MMJPE, Jetten MJ, Mohammed SG, Claessen SMH, de Vries RHW, Stell A, de Bont DFA, Engelse MA, Mumcuoglu D, van Blitterswijk CA, Dankers PYW, de Koning EJP, van Apeldoorn AA, LaPointe VLS. Oxidative stress in pancreatic alpha and beta cells as a selection criterion for biocompatible biomaterials. Biomaterials 2021;267:120449. [PMID: 33129188 DOI: 10.1016/j.biomaterials.2020.120449] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
23 Bassi G, Grimaudo MA, Panseri S, Montesi M. Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. Int J Mol Sci 2021;22:1195. [PMID: 33530487 DOI: 10.3390/ijms22031195] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Santos D, González-Pérez F, Giudetti G, Micera S, Udina E, Del Valle J, Navarro X. Preferential Enhancement of Sensory and Motor Axon Regeneration by Combining Extracellular Matrix Components with Neurotrophic Factors. Int J Mol Sci 2016;18:E65. [PMID: 28036084 DOI: 10.3390/ijms18010065] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
25 Patel M, Ahn S, Koh W. Topographical pattern for neuronal tissue engineering. Journal of Industrial and Engineering Chemistry 2022. [DOI: 10.1016/j.jiec.2022.07.006] [Reference Citation Analysis]
26 Chen X, Ye K, Yu J, Gao J, Zhang L, Ji X, Chen T, Wang H, Dai Y, Tang B, Xu H, Sun X, Hu J. Regeneration of sciatic nerves by transplanted microvesicles of human neural stem cells derived from embryonic stem cells. Cell Tissue Bank 2020;21:233-48. [PMID: 32052220 DOI: 10.1007/s10561-020-09816-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
27 Mueller M, de la Oliva N, Del Valle J, Delgado-Martínez I, Navarro X, Stieglitz T. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring. J Neural Eng 2017;14:066016. [PMID: 28695839 DOI: 10.1088/1741-2552/aa7eea] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
28 Tao J, He Y, Wang S, Mao J. 3D-printed nerve conduit with vascular networks to promote peripheral nerve regeneration. Med Hypotheses 2019;133:109395. [PMID: 31522108 DOI: 10.1016/j.mehy.2019.109395] [Reference Citation Analysis]
29 Puhl DL, Funnell JL, Nelson DW, Gottipati MK, Gilbert RJ. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering (Basel) 2020;8:4. [PMID: 33383759 DOI: 10.3390/bioengineering8010004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
30 Pestana FM, Domingues RCC, Oliveira JT, Durço DFPA, Goulart CO, Mendonça HR, Dos Santos ACR, de Campos NT, da Silva BT, Pereira CC, Borges CP, Martinez AMB. Comparison of morphological and functional outcomes of mouse sciatic nerve repair with three biodegradable polymer conduits containing poly(lactic acid). Neural Regen Res 2018;13:1811-9. [PMID: 30136697 DOI: 10.4103/1673-5374.238712] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]