BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Luo X, Liu L, Wang Y, Li J, Berbille A, Zhu L, Wang ZL. Tribovoltaic Nanogenerators Based on MXene–Silicon Heterojunctions for Highly Stable Self‐Powered Speed, Displacement, Tension, Oscillation Angle, and Vibration Sensors. Adv Funct Materials 2022;32:2113149. [DOI: 10.1002/adfm.202113149] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Dong S, Bu T, Wang Z, Feng Y, Liu G, Zeng J, Wang Z, Cao J, Zhang Z, Liu F, Zhang C. Freestanding‐Mode Tribovoltaic Nanogenerator for Harvesting Sliding and Rotational Mechanical Energy. Advanced Energy Materials 2023. [DOI: 10.1002/aenm.202300079] [Reference Citation Analysis]
2 Sriphan S, Vittayakorn N. Tribovoltaic effect: Fundamental working mechanism and emerging applications. Materials Today Nano 2023. [DOI: 10.1016/j.mtnano.2023.100318] [Reference Citation Analysis]
3 Li Y, Huang S, Peng S, Jia H, Pang J, Ibarlucea B, Hou C, Cao Y, Zhou W, Liu H, Cuniberti G. Toward Smart Sensing by MXene. Small 2022. [DOI: 10.1002/smll.202206126] [Reference Citation Analysis]
4 Xia J, Luo X, Li J, Zhu L, Wang ZL. Wear-Resisting and Stable 4H-SiC/Cu-Based Tribovoltaic Nanogenerators for Self-Powered Sensing in a Harsh Environment. ACS Appl Mater Interfaces 2022. [PMID: 36461926 DOI: 10.1021/acsami.2c15781] [Reference Citation Analysis]
5 Jia C, Zhu Y, Sun F, Wen Y, Wang Q, Li Y, Mao Y, Zhao C. Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring. Sustainability 2022;14:14422. [DOI: 10.3390/su142114422] [Reference Citation Analysis]
6 Wang M, Yang J, Liu S, Meng Y, Qin Y, Li X. Metal‐Gallium Arsenide Based Tribovoltaic Nanogenerators and its Application for High‐Precision Self‐Powered Displacement Sensors. Adv Materials Technologies. [DOI: 10.1002/admt.202200677] [Reference Citation Analysis]
7 Qiao W, Zhao Z, Zhou L, Liu D, Li S, Yang P, Li X, Liu J, Wang J, Wang ZL. Simultaneously Enhancing Direct‐Current Density and Lifetime of Tribovotaic Nanogenerator via Interface Lubrication. Adv Funct Materials. [DOI: 10.1002/adfm.202208544] [Reference Citation Analysis]
8 Xing C, Tian Y, Yu Z, Li Z, Meng B, Peng Z. Cellulose Nanofiber-Reinforced MXene Membranes as Stable Friction Layers and Effective Electrodes for High-Performance Triboelectric Nanogenerators. ACS Appl Mater Interfaces 2022. [PMID: 35924833 DOI: 10.1021/acsami.2c10551] [Reference Citation Analysis]
9 Chen Y, Zhang Z, Wang Z, Bu T, Dong S, Wei W, Chen Z, Lin Y, Lv Y, Zhou H, Sun W, Zhang C. Friction-Dominated Carrier Excitation and Transport Mechanism for GaN-Based Direct-Current Triboelectric Nanogenerators. ACS Appl Mater Interfaces 2022. [PMID: 35575638 DOI: 10.1021/acsami.2c03853] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
10 Wang Z, Gong L, Dong S, Fan B, Feng Y, Zhang Z, Zhang C. A humidity-enhanced silicon-based semiconductor tribovoltaic direct-current nanogenerator. J Mater Chem A 2022. [DOI: 10.1039/d2ta07637c] [Reference Citation Analysis]