BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang B, Zheng R, Yang W, Han X, Hou C, Zhang Q, Li Y, Li K, Wang H. Synergistic Solvation and Interface Regulations of Eco‐Friendly Silk Peptide Additive Enabling Stable Aqueous Zinc‐Ion Batteries. Adv Funct Materials 2022;32:2112693. [DOI: 10.1002/adfm.202112693] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Xie D, Sang Y, Wang DH, Diao WY, Tao FY, Liu C, Wang JW, Sun HZ, Zhang JP, Wu XL. ZnF(2) -Riched Inorganic/Organic Hybrid SEI: in situ-Chemical Construction and Performance-Improving Mechanism for Aqueous Zinc-ion Batteries. Angew Chem Int Ed Engl 2023;62:e202216934. [PMID: 36478517 DOI: 10.1002/anie.202216934] [Reference Citation Analysis]
2 Lu K, Chen C, Wu Y, Liu C, Song J, Jing H, Zhao P, Liu B, Xia M, Hao Q, Lei W. Versatile 1, 3-dimethyl-2-imidazolidinone electrolyte additive: Enables extremely long life zinc metal batteries with different substrates. Chemical Engineering Journal 2023;457:141287. [DOI: 10.1016/j.cej.2023.141287] [Reference Citation Analysis]
3 Gou Q, Luo H, Zhang Q, Deng J, Zhao R, Odunmbaku O, Wang L, Li L, Zheng Y, Li J, Chao D, Li M. Electrolyte Regulation of Bio-Inspired Zincophilic Additive toward High-Performance Dendrite-Free Aqueous Zinc-Ion Batteries. Small 2023;:e2207502. [PMID: 36650991 DOI: 10.1002/smll.202207502] [Reference Citation Analysis]
4 Song TB, Huang ZH, Zhang XR, Ni JW, Xiong HM. Nitrogen-Doped and Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly Reversible Aqueous Zinc-Ion Batteries. Small 2023;:e2205558. [PMID: 36650986 DOI: 10.1002/smll.202205558] [Reference Citation Analysis]
5 Gopalakrishnan M, Ganesan S, Nguyen MT, Yonezawa T, Praserthdam S, Pornprasertsuk R, Kheawhom S. Critical roles of metal-organic frameworks in improving the Zn anode in aqueous zinc-ion batteries. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141334] [Reference Citation Analysis]
6 Quan Y, Yang M, Chen M, Zhou W, Han X, Chen J, Liu B, Shi S, Zhang P. Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141392] [Reference Citation Analysis]
7 Du Z, Zhang Y, Ye M, Tang Y, Liu X, Li CC. Unique interlayer chemical environment induced stable zinc plating/stripping via a Zn-based magadiite artificial interphase. Journal of Power Sources 2023;554:232262. [DOI: 10.1016/j.jpowsour.2022.232262] [Reference Citation Analysis]
8 Wang M, Wu X, Yang D, Zhao H, He L, Su J, Zhang X, Yin X, Zhao K, Wang Y, Wei Y. A colloidal aqueous electrolyte modulated by oleic acid for durable zinc metal anode. Chemical Engineering Journal 2023;451:138589. [DOI: 10.1016/j.cej.2022.138589] [Reference Citation Analysis]
9 He C, Sun J, Hou C, Zhang Q, Li Y, Li K, Wang H. Sandwich-structural ionogel electrolyte with core–shell ionic-conducting nanocomposites for stable Li metal battery. Chemical Engineering Journal 2023;451:138993. [DOI: 10.1016/j.cej.2022.138993] [Reference Citation Analysis]
10 Wu J, Liu C, Zhang H, Ge Z, Tu H, Deng W, Hou H, Ji X. Regulation of the Electrochemical Plating/Stripping Process for Zn: Multifunctional Effects of N, S-Codoped Carbon Dots. J Phys Chem Lett 2022;13:11883-91. [PMID: 36524766 DOI: 10.1021/acs.jpclett.2c03502] [Reference Citation Analysis]
11 Liu C, Guo F, Yang Q, Mi H, Ji C, Yang N, Qiu J. Manipulating Deposition Behavior by Polymer Hydrogel Electrolyte Enables Dendrite-Free Zinc Anode for Zinc-Ion Hybrid Capacitors. Small Methods 2022;:e2201398. [PMID: 36564360 DOI: 10.1002/smtd.202201398] [Reference Citation Analysis]
12 Li G, Wang X, Lv S, Wang J, Dong X, Liu D. Long-life and low-polarization Zn metal anodes enabled by a covalent triazine framework coating. Chemical Engineering Journal 2022;450:138116. [DOI: 10.1016/j.cej.2022.138116] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
13 Zhu M, Ran Q, Huang H, Xie Y, Zhong M, Lu G, Bai FQ, Lang XY, Jia X, Chao D. Interface Reversible Electric Field Regulated by Amphoteric Charged Protein-Based Coating Toward High-Rate and Robust Zn Anode. Nanomicro Lett 2022;14:219. [PMID: 36355311 DOI: 10.1007/s40820-022-00969-4] [Reference Citation Analysis]
14 Wang T, He D, Yao H, Guo X, Sun B, Wang G. Development of Proteins for High‐Performance Energy Storage Devices: Opportunities, Challenges, and Strategies. Advanced Energy Materials. [DOI: 10.1002/aenm.202202568] [Reference Citation Analysis]
15 Qin H, Kuang W, Hu N, Zhong X, Huang D, Shen F, Wei Z, Huang Y, Xu J, He H. Building Metal‐Molecule Interface towards Stable and Reversible Zn Metal Anodes for Aqueous Rechargeable Zinc Batteries. Adv Funct Materials. [DOI: 10.1002/adfm.202206695] [Reference Citation Analysis]
16 Huang C, Zhao X, Hao Y, Yang Y, Qian Y, Chang G, Zhang Y, Tang Q, Hu A, Chen X. Long Shelf-Life Efficient Electrolytes Based on Trace l-Cysteine Additives toward Stable Zinc Metal Anodes. Small 2022;:e2203674. [PMID: 35941099 DOI: 10.1002/smll.202203674] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
17 Wu T, Ji C, Mi H, Guo F, Guo G, Zhang B, Wu M. Construction of zwitterionic osmolyte-based hydrogel electrolytes towards stable zinc anode for durable aqueous zinc ion storage and integrated electronics. J Mater Chem A 2022. [DOI: 10.1039/d2ta07410a] [Reference Citation Analysis]