1 |
Jia S, Ji S, Zhao J, Lv Y, Wang J, Sun D, Ding D. A Fluorinated Supramolecular Self-Assembled Peptide as Nanovaccine Adjuvant for Enhanced Cancer Vaccine Therapy. Small Methods 2023;:e2201409. [PMID: 36802205 DOI: 10.1002/smtd.202201409] [Reference Citation Analysis]
|
2 |
Yin W, Deng B, Xu Z, Wang H, Ma F, Zhou M, Lu Y, Zhang J. Formulation and Evaluation of Lipidized Imiquimod as an Effective Adjuvant. ACS Infect Dis 2023;9:378-87. [PMID: 36688646 DOI: 10.1021/acsinfecdis.2c00583] [Reference Citation Analysis]
|
3 |
Zhang Y, Chen J, Shi L, Ma F. Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. Mater Horiz 2023;10:361-92. [PMID: 36541078 DOI: 10.1039/d2mh01358d] [Reference Citation Analysis]
|
4 |
Dykman LA, Staroverov SA, Kozlov SV, Fomin AS, Chumakov DS, Gabalov KP, Kozlov YS, Soldatov DA, Khlebtsov NG. Immunization of Mice with Gold Nanoparticles Conjugated to Thermostable Cancer Antigens Prevents the Development of Xenografted Tumors. Int J Mol Sci 2022;23. [PMID: 36430792 DOI: 10.3390/ijms232214313] [Reference Citation Analysis]
|
5 |
Song L, Lu L, Pu Y, Yin H, Zhang K. Nanomaterials-Based Tumor Microenvironment Modulation for Magnifying Sonodynamic Therapy. Acc Mater Res . [DOI: 10.1021/accountsmr.2c00106] [Reference Citation Analysis]
|
6 |
Nazarizadeh A, Staudacher AH, Wittwer NL, Turnbull T, Brown MP, Kempson I. Aluminium Nanoparticles as Efficient Adjuvants Compared to Their Microparticle Counterparts: Current Progress and Perspectives. IJMS 2022;23:4707. [DOI: 10.3390/ijms23094707] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
7 |
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coordination Chemistry Reviews 2022;457:214423. [DOI: 10.1016/j.ccr.2022.214423] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
|